Skip to main content
Log in

Anti-phase, asymmetric and aperiodic oscillations in excitable cells—I. Coupled bursters

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

I seek to explain phenomena observed in simulations of populations of gap junction-coupled bursting cells by studying the dynamics of identical pairs. I use a simplified model for pancreatic β-cells and decompose the system into fast (spike-generating) and slow subsystems to show how bifurcations of the fast subsystem affect bursting behavior. When coupling is weak, the spikes are not in phase but rather are anti-phase, asymmetric or quasi-periodic. These solutions all support bursting with smaller amplitude spikes than the in-phase case, leading to increased burst period. A key geometrical feature underlying this is that the in-phase periodic solution branch terminates in a homoclinic orbit. The same mechanism also provides a model for bursting as an emergent property of populations; cells which are not intrinsic bursters can burst when coupled. This phenomenon is enhanced when symmetry is broken by making the cells differ in a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abbott, L. F. and G. LeMasson. 1993. Analysis of neuron models with dynamically regulated conductances.Neural Comput. 5, 823–842.

    Google Scholar 

  • Aronson, D. G., G. B. Ermentrout and N. Kopell. 1990. Amplitude response of coupled oscillators.Physica 41D, 403–449.

    MathSciNet  Google Scholar 

  • Ashkenazi, M. and H. G. Othmer. 1978. Spatial patterns in coupled biochemical oscillators.J. math. Biol. 5, 305–350.

    MATH  MathSciNet  Google Scholar 

  • Chay, T. R. and D. L. Cook. 1988. Endogenous bursting patterns in excitable cells.Math. Biosci. 90, 139–153.

    Article  MathSciNet  Google Scholar 

  • Chay, T. R. and J. Keizer. 1983. Minimal model for membrane oscillations in the pancreatic β-cell.Biophys. J. 42, 181–190.

    Google Scholar 

  • Doedel, E. 1981. AUTO: a program for the automatic bifurcation analysis of autonomous systems.Cong. Num. 30, 265–284.

    MATH  MathSciNet  Google Scholar 

  • Ermentrout, B. 1990.Phase Plane: The Dynamical Systems Tool Version 3.0. Pacific Grove, CA: Brooks/Cole.

    Google Scholar 

  • Ermentrout, G. B. 1985. The behavior of rings of coupled oscillators.J. math. Biol. 23, 55–74.

    MATH  MathSciNet  Google Scholar 

  • Fairgreave, T. F. and A. D. Jepson. 1991. O. K. Floquet multipliers.SIAM J. numer. Anal. 28, 1446–1462.

    Article  MathSciNet  Google Scholar 

  • Fitzhugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane.Biophys. J. 1, 445–466.

    Google Scholar 

  • Gear, C. W. 1967. The numerical integration of ordinary differential equations.Math. Comput. 21, 146–156.

    Article  MATH  MathSciNet  Google Scholar 

  • Gembal, M., P. Gilon and J.-C. Henquin. 1992. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells.J. clin. Invest. 89, 1288–1295.

    Article  Google Scholar 

  • Halban, P. A., C. B. Wollheim, B. Blondel, P. Meda, E. N. Niesor and D. H. Mintz. 1982. The possible importance of contact between pancreatic islet cells for the control of insulin release.Endocrinology 111, 86–94.

    Article  Google Scholar 

  • Hansel, D., G. Mato and C. Meunier. 1993. Phase dynamics for weakly coupled Hodgkin-Huxley neurons.Europhys. Lett. 23, 367–372.

    Google Scholar 

  • Himmel, D. and T. R. Chay. 1981. Theoretical studies on the electrical activity of pancreatic β-cells as a function of glucose.Biophys. J. 51, 89–107.

    Google Scholar 

  • Hindmarsh, A. 1974. An ordinary differential equation solver. Report UCID-39991, Lawrence Livermore Laboratory.

  • Hindmarsh, J. and M. Rose. 1984. A model of neuronal bursting using three coupled first order differential equations.Proc. R. Soc. (Lond.) B221, 87–102.

    Article  Google Scholar 

  • Kawato, M., M. Sokabe and R. Suzuki. 1979. Synergism and antagonism of neurons caused by an electrical synapse.Biol. Cybern. 34, 81–89.

    Article  MATH  MathSciNet  Google Scholar 

  • Keizer, J. and G. Magnus. 1989. ATP-sensitive potassium channels and bursting in the and voltage-inactivated Ca2+ channels.Proc. natn. Acad. Sci. U.S.A. 88, 3897–3901.

    Article  Google Scholar 

  • Kuramoto, Y. 1984.Chemical Oscillations, Waves, and Turbulence. Berlin: Springer.

    MATH  Google Scholar 

  • Lewis, E. R. 1968. Synchronization in small groups of neurons: a study with electronic models. InCybernetic Problems in Bionics, H. L. Oestreich (Ed.), pp. 777–789. New York: Gordon and Breach.

    Google Scholar 

  • Meissner, H. P. and H. Schmelz. 1974. Membrane protential of beta-cells in pancreatic islets.Pfluegers Arch. 351, 195–206.

    Article  Google Scholar 

  • Morita, Y. 1986. A secondary bifurcation problem of weakly coupled oscillators with time delay.Jap. J. appl. Math. 3, 223–247.

    Article  MATH  Google Scholar 

  • Morita, Y. 1987. A periodic wave and its stability to a circular chain of weakly coupled oscilators.SIAM J. math. Anal. 18, 1681–1698.

    Article  MATH  MathSciNet  Google Scholar 

  • Morris, C. and H. Lecar. 1981. Voltage oscillations in the barnacle giant muscle fiber.Biophys. J. 35, 193–213.

    Google Scholar 

  • Pernarowski, M., R. M. Miura and J. Kevorkian. 1992. Perturbation techniques for models of bursting electrical activity in the pancreatic β-cells.SIAM J. appl. Math. 52, 1627–1650.

    Article  MATH  MathSciNet  Google Scholar 

  • Rinzel, J. 1985. Bursting oscillations in an excitable membrane model. InOrdinary and Partial Differential Equations, B. D. Sleeman and R. J. Jarvis (Eds), pp. 304–316. New York: Springer.

    Google Scholar 

  • Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology, Morphogenesis, and Neurosciences, E. Teramoto and M. Yamaguti (Eds), Lecture Notes in Biomathematics 71, pp. 267–281. New York: Springer.

    Google Scholar 

  • Rinzel, J. and G. B. Ermentrout. 1989. Analysis of neural excitability and oscillations. InMethods in Neuronal Modeling, C. Koch and I. Segev (Eds), pp. 135–169. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rinzel, J. and Y. S. Lee. 1986. On different mechanisms for membrane potential bursting. InNonlinear Oscillations in Biology and Chemistry, H. G. Othmer (Ed.), Lecture Notes in Biomathematics 66, pp. 19–33. New York: Springer.

    Google Scholar 

  • Rinzel, J., A. Sherman and C. L. Stokes. 1992. Channels, coupling, and synchronized rhythmic bursting activity. InAnalysis and Modeling of Neural Systems, F. Eeckman (Ed.), pp. 29–46. Boston: Kluwer.

    Google Scholar 

  • Santos, R., L. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria and M. Valdeolmillos. 1991. Widespread synchronous Ca2+ oscillations due to bursting electrical activity in single pancreatic islets.Pfluegers Arch. 418, 417–422.

    Article  Google Scholar 

  • Sherman, A. and J. Rinzel. 1991. Model for synchronization of pancreatic β-cells bygap junction coupling.Biophys. J. 59, 547–559.

    Google Scholar 

  • Sherman, A. and J. Rinzel. 1992. Rhythmogenic effects of weak electrotonic coupling in neuronal models.Proc. natn. Acad. Sci. U.S.A. 89, 2471–2474.

    Article  Google Scholar 

  • Sherman, A. and H.-R. Zhu. 1994. Anti-phase, asymmetric, and aperiodic oscillations in electrically active cells. II. Fast sub-system. In preparation.

  • Sherman, A., J. Rinzel and J. Keizer. 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing.Biophys. J. 54, 411–425.

    Google Scholar 

  • Smolen, P. and J. Keizer. 1992. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic β-cell.J. Membr. Biol. 127, 9–19.

    Google Scholar 

  • Smolen, P., J. Rinzel and A. Sherman. 1993. Why pancreatic islets burst but single β cells do not: the heterogeneity hypothesis.Biophys. J. 64, 1668–1680.

    Article  Google Scholar 

  • Somers, D. and N. Kopell. 1993. Rapid synchronization through fast threshold modulation.Biol. Cybern. 68, 393–407.

    Article  Google Scholar 

  • Taylor, M. A. and I. G. Kevrikidis. 1991. Some common features of coupled oscillatory reacting systems.Physica 51D, 274–292.

    Google Scholar 

  • Terman, D. 1992. The transition from bursting to continuous spiking in excitable membrane models.J. Nonlinear. Sci. 2, 135–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, X.-J. 1993. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle.Physica 62d, 263–274.

    Google Scholar 

  • Wiggins, S. 1990.Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, A. Anti-phase, asymmetric and aperiodic oscillations in excitable cells—I. Coupled bursters. Bltn Mathcal Biology 56, 811–835 (1994). https://doi.org/10.1007/BF02458269

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458269

Keywords

Navigation