Skip to main content
Log in

Inclusion of junction elements in a linear cardiac model through secondary sources: Application to defibrillation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

If a defibrillating stimulus current is applied to a one-dimensional fibre, and if the fibre has junction resistances joining the individual cells, what pattern of transmembrane voltages is induced by the stimulus, and what are the curretns that flow to produce the transmembrane voltages? These questions were considered in an earlier report; in this paper, two additional solution procedures are provided, one exact and one approximate, the latter relatively simple. Earlier work used a resistive model of the cells and junctions, together with a computer solution of 330 simultaneous equations for a 30-cell fibre. The present methods exploit the known solutions for the continuous (zero junctional resistance) fibre together with an analytic treatment of the junctions. With the present methods solution for currents and transmembrane potentials in the same 30-cell fibre requires a solution of only 29 equations (exact method) or the solution of none at all (the approximate method). The results show that, compared with previous results, the exact method provides almost identical transmembrane values; the approximate method gives values within 2 per cent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clerc, L. (1976) Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol.,255, 335–346.

    Google Scholar 

  • Hodgkin, A. L. andRushton, W. A. (1946) The electrical constants of a crustacean nerve fibre.Proc. R. Soc.,B133, 444–479.

    Article  Google Scholar 

  • Plonsey, R. andBarr, R. C. (1982) The four-electrode resistivity technique as applied to cardiac muscle.IEEE Trans.,BME-29, 541–546.

    Google Scholar 

  • Plonsey, R. andBarr, R. C. (1986) Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents.Med. & Biol. Eng. & Comput.,24, 130–136.

    Google Scholar 

  • Weidmann, S. (1952) Electrical constants of Purkinje fibers.J. Physiol.,118, 348–360.

    Google Scholar 

  • Weidmann, S. (1970) Electrical constants of trabecular muscle from mammalian heart.,210, 1041–1054.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plonsey, R., Barr, R.C. Inclusion of junction elements in a linear cardiac model through secondary sources: Application to defibrillation. Med. Biol. Eng. Comput. 24, 137–144 (1986). https://doi.org/10.1007/BF02443926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443926

Keywords

Navigation