Skip to main content
Log in

Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Published information, both theoretical and experimental, on As chemical behavior in soils is reviewed. Because of many emission sources, As is ubiquitous. Thermodynamic calculations revealed that As(V) species (HAsO 2-4 >H2AsO -4 at pH 7) are more abundant in soil solutions that are oxidized more than pe+pH>9. Arsenic is expected to be in As(III) form (HAsO 02 =H3AsO 03 >AsO -2 =H2AsO -3 at pH 7) in relatively anoxic soil solutions with pe+pH<7.

Adsorption on soil colloids is an important As scavenging mechanism. The adsorption capacity and behavior of these colloids (clay, oxides or hydroxides surfaces of Al, Fe and Mn, calcium carbonates, and/or organic matter) are dependent on ever-changing factors, such as hydration, soil pH, specific adsorption, changes in cation coordination, isomorphous replacement, crystallinity, etc. Because of the altering tendencies of soil colloids properties, adsorption of As has become a complex, empirical, ambiguous, and often a self contradicting process in soils. In general, Fe oxides/hydroxides are the most commonly involved in the adsorption of As in both acidic and alkaline soils. The surfaces of Al oxides/hydroxides and clay may play a role in As adsorption, but only in acidic soils. The carbonate minerals are expected to adsorb As in calcareous soils. The role of Mn oxides and biogenic particles in the As adsorption in soils appears to be limited to acidic soils. Kinetically, As adsorption may reach over 90% completion in terms of hours.

Precipitation of a solid phase is another mechanism of As removal from soil solutions. Thermodynamic calculations showed that in the acidic oxic and suboxic soils, Fe-arsenate (Fe3(AsO4)4)2) may control As solubility, whereas in the anoxic soils, sulfides of As(III) may control the concentrations of the dissolved As in soil solutions. In alkaline acidic oxic and suboxic soils, precipitation of both Fe- and Ca-arsenate may limit As concentrations in soil solutions.

Field observations suggest that direct precipitation of discrete As solid phases may not occur, except in contaminated soils. Chemisorption of As oxyanions on soil colloid surfaces, especially those of Fe oxide/hydroxides and carbonates, is believed to a common mechanisms for As solid phase formation in soils. It is suggested that As oxyanions gradually concentrate on colloid surfaces to a level high enough to precipitate a discrete or mixed As solid phase.

Arsenic volatilization is another As scavenging mechanism operating in soils. Many soil organisms are capable of converting arsenate and arsenite to several reduced forms, largely methylated arsines which are volatile. These organisms may generate different or similar biochemical products. Methylation and volatilization of As can be affected by several biotic (such as type of organisms, ability of organism for methylation, etc.) and abiotic factors (soil pH, temperature, redox conditions, methyl donor, presence of other ions, etc.) factors. Information on the rate of As biotransformations in soils is limited. In comparison to the biologically assisted volatilization, the chemical volatilization of As in soils is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. A., Ferguson, J. F. and Gavis, J.: 1976,J. Colloid. Interface Sci. 54, 391–399.

    Article  CAS  Google Scholar 

  • Anderson, M. A. and Malotky, D. T.: 1979,J. Colloid. Interface Sci. 72, 413.

    CAS  Google Scholar 

  • Boyle, R. W. and Jonasson, I. R.: 1973,J. Geochem. Explor. 2, 251.

    Article  CAS  Google Scholar 

  • Braman, R. S.: 1978,Molecular Forms of Arsenic in the Environment, Proc. Workshop on Toxicity to Biota of Metal Forms in Natural Waters. Great Lakes Regional Office, Windsor, Ontario, pp. 249–261.

    Google Scholar 

  • Brannon, J. M. and Patrick, W. H.: 1987,Environ. Sci. Technol. 21, 450.

    Article  CAS  Google Scholar 

  • Challenger, F.: 1945,Chem. Rev. 36, 315.

    Article  CAS  Google Scholar 

  • Chilvers, D. C. and Peterson, P. J.: 1987, ‘Global Cycling of Arsenic’, in Hutchinson, T. C. and Meema, K. M. (eds.),Lead, Mercury, Cadmium, and Arsenic in the Environment: Scope 31, John Wiley & Sons, New York, pp. 279–301.

    Google Scholar 

  • Cox, D. P.: 1975, ‘Microbiological Methylation of Arsenic’, in Woolson, E. A. (ed.),Arsenical Pesticides, ACS Symp. Ser. 7, pp.

  • Cox, D. P. and Alexander, M.: 1973,Bull. Environ. Contam. Toxicol. 9, 84.

    Article  CAS  Google Scholar 

  • Da Costa, E. W. B.: 1972,Appl. Microbiol. 24, 424.

    Google Scholar 

  • Deuel, L. E. and Swoboda, A. R.: 1972,Soil Sci. Soc. Am. Proc. 36, 276.

    Article  CAS  Google Scholar 

  • Dickens, R. and Hiltbold, A. E.: 1967,Weeds 15, 299.

    CAS  Google Scholar 

  • ElBassam, N., Keeppel, H. and Tietjen, C.: 1975, ‘Arsenic Transfer in Soils’,Abstr. ESNA Environ. Pollut., p. 1.

  • ElKhatib, E. A., Bennett, O. L. and Wright, Z.: 1984a,Soil Sci. Soc. Am. J. 48, 758.

    Article  CAS  Google Scholar 

  • ElKhatib, E. A., Bennett, O. L. and Wright, Z.: 1984b,Soil Sci. Soc. Am. J. 48, 1025.

    Article  CAS  Google Scholar 

  • Epp, E. A. and Sturgis, M. B.: 1939,Soil Sci. Soc. Am. Proc. 4, 215.

    Google Scholar 

  • Fiskell, J. G. A., Mansell, R. S., Selim, H. M. and Martin, F. G.: 1979,J. Environ. Qual. 8, 579.

    Article  CAS  Google Scholar 

  • Fleischer, M.: 1973, Cycling and control of metals. Poceeding of an Environmental Resources Conference. National Environmental Research Center, Cincinnati.

    Google Scholar 

  • Frost, R. R. and Griffin, R. A.: 1977,Soil Sci. Soc. Am. J. 41, 53.

    Article  CAS  Google Scholar 

  • Fruchter, J. S., Rai, D. and Zachara, J. M.: 1990,Environ. Sci. Technol. 24, 1173.

    Article  CAS  Google Scholar 

  • Fuller, C. C., Davis, J. A., Wachunas, G. A. and Rea, B. A.: 1993,Geochim. Cosmochim. Acta 57, 2271.

    Article  CAS  Google Scholar 

  • Goldberg, S. and Glaubig, R. A.: 1988,Soil Sci. Am. J. 52, 1297.

    Article  CAS  Google Scholar 

  • Greenland, D. J.: 1975,Clay Miner. 10, 407.

    CAS  Google Scholar 

  • Griffin, R. A. and Burau, R. G.: 1974,Soil Sci. Soc. Am. Proc. 38, 892.

    Article  CAS  Google Scholar 

  • Harper, T. R. and Kingham, W.: 1992,Water Environ. Res. 64, 200.

    CAS  Google Scholar 

  • Harrison, J. B. and Berkheiser, V. E.: 1982,Clay Miner. 30, 97.

    CAS  Google Scholar 

  • Hiltbold, A. E.: 1975, ‘Behavior of Organoarsenicals in Plants and Soils’, in Woolson, E. A. (ed.),Arsenical Pesticides, ACS Symp. Ser. 7, pp. 53–69.

  • Hingston, F. J.: 1981, ‘A Review of Anion Adsorption’, in Anderson, M. A. and Rubin, A. J. (eds.),Adsorption of Inorganics at Solid-Liquid Interface. Ann Arbor Science Publication, Ann Arbor, USA, pp. 51–90.

    Google Scholar 

  • Hingston, F. J.: 1970, Specific Adsorption of Anions on Goethite and Gibbsite, Ph.D. Deser. University of W. Australia, Nedlands.

    Google Scholar 

  • Hingston, F. J., Posner, A. M. and Quirk, J. P.: 1971,Discuss. Faraday Soc. 52, 334.

    Article  Google Scholar 

  • Hsia, T. H., Lo, S. L. and Lin, C. F.: 1992,Chemosphere 25, 1825.

    Article  CAS  Google Scholar 

  • Huang, P. M.: 1975,Soil Sci. Soc. Am. Proc. 39, 271.

    Article  CAS  Google Scholar 

  • Huysmans, K. D. and Frankenberger, W. T. Jr.: 1991,Sci. Total Environ. 105, 13.

    Article  CAS  Google Scholar 

  • Jacobs, L. W., Syers, J. K. and Walker, T. W.: 1970,Soil Sci. Soc. Am. Proc. 34, 750.

    Article  CAS  Google Scholar 

  • Jernelov, A.: 1975, Microbial Alkylation of Metals. Proc. Conf. on Heavy Metals in the Environment, Toronto, p. 845.

  • Johnson, L. R. and Hiltbold, A. E.: 1969,Soil Sci. Soc. Am. Proc. 33, 279.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. and Pendias, H.: 1984,Trace Elements in the Biological Environment, Wyd. Geol. Warsaw, Poland, p. 300.

    Google Scholar 

  • Kinniburgh, D. G., Jackson, M. L. and Syers, J. K.: 1976,Soil Sci. Soc. Am. J. 40, 796.

    Article  CAS  Google Scholar 

  • Lindsay, W. L.: 1979,Chemical Equilibria in Soils, John Wiley & Sons, New York, pp. 449.

    Google Scholar 

  • Lindsay, W. L. and Sadiq, M.: 1983,Sci of Total Environ. 28, 169.

    Article  CAS  Google Scholar 

  • Lumsdon, D. G., Fraser, A. R. Russell, J. D. and Livesey, 1984,J. Soil Sci. 35, 381.

    CAS  Google Scholar 

  • Machlis, L.: 1941,Plant Physiol. 16, 521.

    Article  CAS  Google Scholar 

  • Maeda, S., Ohki, A., Saikoji, S. and Naka, K.: 1992,Separation Sci. Technol. 27, 681.

    CAS  Google Scholar 

  • Malotky, D. T. and Anderson, M. A.: 1976,J. Colloid. Interface Sci. 4, 281.

    CAS  Google Scholar 

  • Mandl, M. Matulova, P. and Docekalova, H.: 1992,Appl. Microbiol. Biotechnol. 38, 429.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D. and Patrick, W. H. Jr. 1991,Environ. Sci. Technol. 25, 1414.

    Article  CAS  Google Scholar 

  • McBride, B. and Wolfe, R.: 1971,Biochem. 10, 4312.

    Article  CAS  Google Scholar 

  • McKenzie, R. M.: 1981,Aust. J. Soil Res. 19, 41.

    Article  CAS  Google Scholar 

  • Misra, S. G. and Tiwari, R. C.: 1963,Soil Sci. Plant. Nutr. 9, 10.

    Google Scholar 

  • Murray, J. W.: 1974,J. Colloid. Interface Sci. 46, 357.

    Article  CAS  Google Scholar 

  • Nightingale, H. I.: 1987,Water Resou. Bull. 23, 663.

    CAS  Google Scholar 

  • Norrish, K.: 1975, ‘The Geochemistry and Mineralogy of Trace Elements’, in Nicholas, D. D. J. and Egan, A. R. (eds),Trace Elements in Soil-Plant-Animal System. Academic Press, New York, p. 55.

    Google Scholar 

  • Nriagu, J. O.: 1988,Environ. Pollut. 50, 139.

    Article  CAS  Google Scholar 

  • Otte, M. T., Dekkers, M. J., Rozema, J. and Broekman, R. A.: 1991,Can. J. Bot. 69, 2670.

    CAS  Google Scholar 

  • Parfitt, R. L.: 1978,Adv. Agron. 30, 1.

    Article  CAS  Google Scholar 

  • Parks, G. A.: 1967,Advances in Chem. Ser. 67, 121.

    Article  Google Scholar 

  • Parks, G. A. and de Bruyn, P. L.: 1962,J. Phys. Chem. 66, 967.

    CAS  Google Scholar 

  • Peryea, F. J.: 1991,Soil Sci. Soc. Am. J. 55, 1301.

    Article  CAS  Google Scholar 

  • Pierce, M. I. and Moore, C. B.: 1980,Environ. Sci. Technol. 14, 214.

    Article  CAS  Google Scholar 

  • Polemio, M., Senesi, N. and Bufo, S. A.: 1982a,Sci. Total Environ. 25, 71.

    Article  CAS  Google Scholar 

  • Polemio, M., Bufo, S. A. and Senesi, N.: 1982b,Plant and Soil 69, 57.

    Article  CAS  Google Scholar 

  • Roy, W. R., Ainsworth, C. C., Griffin, R. A. and Krapac, I. G.: 1984, ‘Development and Application of Batch Adsorption Procedures for Designing Earth Landfill Liners’, inProc. Ann. Madison Waste Conf. University of Wisconsin, Madison, pp. 309–398.

    Google Scholar 

  • Roy, W. R., Hassett, J. J. and Griffen, R. A.: 1986,Soil Sci. Soc. Am. J. 50, 1176.

    Article  CAS  Google Scholar 

  • Sachs, R. M. and Machaels, J. L.: 1971,Weed Sci. 19, 588.

    Google Scholar 

  • Sadiq, M.: 1992,Toxic Metal Chemistry in Marine Environments, Marcel Dekker Inc. New York.

    Google Scholar 

  • Sadiq, M.: 1986,Plant and Soil 91, 241.

    Article  CAS  Google Scholar 

  • Sadiq, M. and Alam, I.: ‘Arsenic Chemistry in Shallow Groundwater Aquifers in the Eastern Province of Saudi Arabia’,Water, Air, and Soil Pollut. (in press).

  • Sadiq, M. and Lindsay, W. L.: 1981,Selection of Standard Free Energies of Formation for use in Soil Chemistry. Arsenic. Supplement to Tech. Bull. 134, Colorado State University Experiment Station, Fort Collins, p. 39.

    Google Scholar 

  • Schraufnagel, R. A.: 1983, ‘Arsenic in Energy Sources: A Future Supply or an Environmental Problem’, in Lederer, W. H. and Fensterheim, R. J. (eds.),Arsenic. Van Nostrand Reinhold Company, New York.

    Google Scholar 

  • Sonderegger, J. L. and Ohguchi, T.: 1988,Environ. Geol. Water Sci. 11, 153.

    CAS  Google Scholar 

  • Turner, A. W.: 1949,Nature 164, 76.

    CAS  Google Scholar 

  • Wada, K. and Okamura, Y.: 1977, ‘Measurements of Exchange Capacities and Hydrolysis as Means of Characterizing Cation and Anion Retention by Soils’, Proc. Int. Seminar on Soil Environ. Fert. Manage. Intensive Agri. Tokyo, pp. 811–815.

    Google Scholar 

  • Wauchope, R. D.: 1983, ‘Uptake, Translocation and Phytotoxicity of Arsenic in Plants’, in Lederer, W. H. and Fensterheim, R. J. (eds.),Arsenic, Van Nostrand Reinhold Company, New York, pp. 348–375.

    Google Scholar 

  • Waychunas, G. A., Rea, B. A., Fuller, C. C. and Davis, J. A.: 1993,Geochim. Cosmochim. Acta 57, 2251.

    Article  CAS  Google Scholar 

  • Weinberg, E. D.: 1977,Microorganisms and Minerals, Marcel Dekkar Inc. New York, p. 492.

    Google Scholar 

  • White, R. E.: 1980,Soil Agri. 2, 71.

    Google Scholar 

  • WHO: 1981,World Health Organization. Environmental Health Criteria, Arsenic, Geneva, p. 174.

  • Wood, J. M.: 1974,Sci. 183, 1049.

    CAS  Google Scholar 

  • Woolson, E. A.: 1977,Environ. Hlth Perspect. 19, 73.

    CAS  Google Scholar 

  • Woolson, E. A., Axley, J. H. and Kearney, P. C.: 1971,Soil Sci. Soc. Am. Proc. 35, 938.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadiq, M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93, 117–136 (1997). https://doi.org/10.1007/BF02404751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02404751

Key words

Navigation