Skip to main content
Log in

Low-temperature deformation behaviour of polycrystalline copper

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-temperature plastic flow in copper was investigated by studying its tensile and creep deformation characteristics. The dependence of the flow stress on temperature and strain rate was used to evaluate the thermal activation energy while the activation area was derived from the change-in-stress creep experiments. A value of 0.6 eV was obtained for the total obstacle energy both in electrolytic and commerical copper. The activation areas in copper of three selected purities fell in the range 1200 to 100 b2. A forest intersection mechanism seems to control the temperature dependent part of the flow stress. The increase in the athermal component of the flow stress with impurity content in copper is attributed to a change in the dislocation density. The investigation also revealed that thermal activation of some attractive junctions also takes place during low-temperature creep. The model of attractive junction formation on a stress decrement during creep, yields a value of 45±10 ergs cm−2 for the stacking fault energy in copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,J. Indian Inst. Sci. 51 (1969) 377.

    CAS  Google Scholar 

  2. H. Conrad,J. Metals 16 (1964) 582.

    CAS  Google Scholar 

  3. J. C. M. Li, in “Dislocation Dynamics” (McGraw-Hill, New York, 1968) 87.

    Google Scholar 

  4. G. B. Gibbs,Mat. Sci. Eng. 4 (1969) 313.

    Article  Google Scholar 

  5. W. C. Overton andJ. Gaffney,Phys. Rev. 98 (1955) 969.

    Article  CAS  Google Scholar 

  6. Y. V. R. K. Prasad, D. H. Sastry, andK. I. Vasu,J. Mat. Sci. 5 (1970) 495.

    Article  CAS  Google Scholar 

  7. N. F. Mott,Phil. Mag. 43 (1952) 1151.

    Google Scholar 

  8. M. Lomer, in “Vacancies and Point Defects in Metals and Alloys” (J. Inst. Met. Symp. London, 1957) 79.

  9. K. R. Evans andW. F. Flanagan,Phil. Mag. 17 (1968) 535.

    CAS  Google Scholar 

  10. P. R. Thornton andP. B. Hirsch,ibid 3 (1958) 738.

    CAS  Google Scholar 

  11. A. Seeger, in “Dislocations and Mechanical Properties of Crystals” (Wiley, New York, 1957) 243.

    Google Scholar 

  12. S. K. Mitra andJ. E. Dorn,Trans. Met. Soc. AIME 224 (1962) 1062.

    CAS  Google Scholar 

  13. H. Conrad, L. Hays, G. Schoeck, andH. Wiedersich,Acta Metallurgica 9 (1961) 367.

    Article  CAS  Google Scholar 

  14. D. H. Sastry, Y. V. R. K. Prasad, andK. I. Vasu,ibid 14 (1969) 1453.

    Article  Google Scholar 

  15. Idem, Met. Trans. 1 (1970) 1827.

    CAS  Google Scholar 

  16. J. Friedel, “Dislocations” (Pergamon Press, New York, 1964) 121, 221.

    Google Scholar 

  17. G. Saada, in “Electron Microscopy and Strength of Crystals” (Wiley, New York, 1963) 651.

    Google Scholar 

  18. D. McLean, “Mechanical Properties of Metals” (Wiley, New York, 1962) 98.

    Google Scholar 

  19. V. A. Pavlov, N. I. Noskova, andR. I. Kuzentsov,Phys. Metals and Metallography 24 (1967) 171.

    Google Scholar 

  20. P. C. J. Gallagher,Met. Trans,1 (1970) 2429.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, D.H., Prasad, Y.V.R.K. & Vasu, K.I. Low-temperature deformation behaviour of polycrystalline copper. J Mater Sci 6, 1433–1440 (1971). https://doi.org/10.1007/BF02403083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403083

Keywords

Navigation