Skip to main content
Log in

Teichmüller geodesics of infinite complexity

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [Ar]Arnoux, P., Échanges d’intervalles et flots sur les surfaces, inErgodic Theory (Les Plans-sur-Bex, 1980), pp. 5–38. Monograph. Enseign. Math., 29. Univ. Genève, Geneva, 1981.

    Google Scholar 

  • [Be]Bers, L., An extremal problem for quasiconformal maps and a theorem by Thurston.Acta Math., 141 (1978), 73–98.

    MATH  MathSciNet  Google Scholar 

  • [Bo]Boshernitzan, M. D., Rank two interval exchange transformations.Ergodic Theory Dynam. Systems, 8 (1988), 379–394.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ca]Calta, K., Veech surfaces and complete periodicity in genus 2. Preprint, 2002.

  • [CFS]Cornfeld, I. P., Fomin, S. V. &Sinaî, Ya. G.,Ergodic Theory. Grundlehren Math. Wiss., 245. Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  • [EO]Eskin, A. &Okounkov, A., Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials.Invent. Math., 145 (2001), 59–103.

    Article  MathSciNet  MATH  Google Scholar 

  • [FLP]Fathi, A., Laudenbach, F. &Poénaru, V.,Travaux de Thurston sur les surfaces. Astérisque, 66–67. Soc. Math. France, Paris, 1979.

    Google Scholar 

  • [Ga]Gardiner, F. P.,Teichmüller Theory and Quadratic Differentials. Wiley, New York, 1987.

    MATH  Google Scholar 

  • [GJ]Gutkin, E. &Judge, C., Affine mappings of translation surfaces: geometry and arithmetic.Duke Math. J., 103 (2000), 191–213.

    Article  MathSciNet  MATH  Google Scholar 

  • [HW]Hardy, G. H. &Wright, E. M.,An Introduction to the Theory of Numbers, 5th edition. Oxford Univ. Press, New York, 1979.

    MATH  Google Scholar 

  • [HM]Hubbard, J. &Masur, H., Quadratic differentials and foliations.Acta Math., 142 (1979), 221–274.

    MathSciNet  MATH  Google Scholar 

  • [HS]Hubert, P. & Schmidt, T. A., Infinitely generated Veech groups. Preprint, 2002.

  • [Ke]Keane, M., Interval exchange transformations.Math. Z., 141 (1975), 25–31.

    Article  MATH  MathSciNet  Google Scholar 

  • [KS]Kenyon, R. &Smillie, J., Billiards on rational-angled triangles.Comment. Math. Helv., 75 (2000), 65–108.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ko]Kontsevich, M., Lyapunov exponents and Hodge theory, inThe Mathematical Beauty of Physics (Saclay, 1996), pp. 318–332. Adv. Ser. Math. Phys., 24. World Sci. Publishing, River Edge, NJ, 1997.

    Google Scholar 

  • [Le]Leutbecher, A., Über die Heckeschen GruppenG(λ), II.Math. Ann., 211 (1974), 63–86.

    Article  MATH  MathSciNet  Google Scholar 

  • [Mc]McMullen, C. T., Billiards and Teichmüller curves on Hilbert modular surfaces.J. Amer. Math. Soc., 16 (2003), 857–885.

    Article  MATH  MathSciNet  Google Scholar 

  • [Man]Mañé, R.,Ergodic Theory and Differentiable Dynamics. Ergeb. Math. Grenzgeb. (3), 8. Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  • [Mas1]Masur, H., Transitivity properties of the horocyclic and geodesic flows on moduli space.J. Analyse Math., 39 (1981), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  • [Mas2]—, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential.Duke Math. J., 66 (1992), 387–442.

    Article  MATH  MathSciNet  Google Scholar 

  • [MT]Masur, H. &Tabachnikov, S., Rational billiards and flat structures, inHandbook of Dynamical Systems, Vol. 1A, pp. 1015–1089. North-Holland, Amsterdam, 2002.

    Google Scholar 

  • [Mu]Mumford, D., A remark on Mahler’s compactness theorem.Proc. Amer. Math. Soc., 28 (1971), 289–294.

    Article  MATH  MathSciNet  Google Scholar 

  • [Se]Seibold, F., Zahlentheoretische Eigenschaften der Heckeschen GruppenG(λ) und verwandter Transformationsgruppen. Dissertation, Technischen Universität München, 1985.

  • [St]Strebel, K.,Quadratic Differentials. Ergeb. Math. Grenzgeb. (3), 5. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  • [Th]Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces.Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417–431.

    MATH  MathSciNet  Google Scholar 

  • [V1]Veech, W. A., The metric theory of interval exchange transformations, III. The Sah-Arnoux-Fathi invariant.Amer. J. Math., 106 (1984), 1389–1422.

    MATH  MathSciNet  Google Scholar 

  • [V2]—, The Teichmüller geodesic flow.Ann. of Math. (2), 124 (1986), 441–530.

    Article  MATH  MathSciNet  Google Scholar 

  • [V3]—, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards.Invent. Math., 97 (1989), 553–583.

    Article  MATH  MathSciNet  Google Scholar 

  • [V4]—, The billiard in a regular polygon.Geom. Funct. Anal., 2 (1992), 341–379.

    Article  MATH  MathSciNet  Google Scholar 

  • [Vo]Vorobets, Ya. B., Plane structures and billiards in rational polygons: the Veech alternative.Uspekhi Mat. Nauk, 51:5 (311) (1996), 3–42 (Russian); English translation inRussian Math. Surveys, 51 (1996), 779–817.

    MATH  MathSciNet  Google Scholar 

  • [Wa]Ward, C. C., Calculation of Fuchsian groups associated to billiards in a rational triangle.Ergodic Theory Dynam. Systems, 18 (1998), 1019–1042.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcmullen, C.T. Teichmüller geodesics of infinite complexity. Acta Math. 191, 191–223 (2003). https://doi.org/10.1007/BF02392964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392964

Keywords

Navigation