Skip to main content
Log in

Electrochemical promotion of conventional and bipolar reactor configurations for NO reduction

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The reduction of NO by CO or C3H6 in the presence of O2, a reaction of great technological importance, was investigated on porous polycrystalline Rh catalyst films using a single-chamber and a wireless bipolar cell configuration. In the latter case the Rh catalyst films were deposited on the inner side of a YSZ tube, while two Au films deposited on the outer side of the tubes were used to polarize the Rh catalyst surface. The experimental conditions used in this study were close to those in the exhaust of a lean burn or diesel engine, i.e., high flowrates and space velocities and in some cases, considerable excess of oxygen. It was found that both direct (conventional) and indirect (wireless) polarization of the catalyst causes significant enhancement in the reaction rates (up to a factor of 20) and in the reactant conversion. These rate increases are strongly non-Faradaic with apparent Faradaic efficiencies, A, in the order of 100, manifesting the effect of Electrochemical Promotion or Non-faradaic Electrochemical Modification of Catalytic Activity (NEMCA).

The Rh catalyst films were subsequently promoted in a classical way, via dry impregnation with NaOH, followed by drying and calcination. The thus Na-promoted Rh films were found to exhibit higher catalytic activity than the unpromoted films, with a considerable decrease in their light-off temperature. The effect of Electrochemical Promotion was then studied on these, already Na-promoted Rh catalysts. The results showed that the effect of Chemical and Electrochemical Promotion on the catalyst performance can be synergetic and their combination may lead to interesting practical applications. This is further supported by the fact that such bipolar tube configurations: (a) do not need electrical connection to the catalyst and (b) can be adapted easier to commercial exhaust units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. C.G. Vayenas, S. Bebelis, C. Pliangos, S. Brosda and D. Tsiplakides, “Electrochemical Activation of Catalysis”, Kluwer/Plenum, New York (2001).

    Google Scholar 

  2. S. Bebelis, and C.G. Vayenas, J. Catal.118, 125 (1989).

    Article  CAS  Google Scholar 

  3. C. Pliangos, C. Raptis, Th. Badas and C.G. Vayenas, Ionics6, 119 (2000); Solid State Ionics136/7, 767 (2000).

    Article  CAS  Google Scholar 

  4. C. Pliangos, I.V. Yentekakis, S. Ladas, and C.G. Vayenas, J. Catal.159, 189 (1996).

    Article  CAS  Google Scholar 

  5. P.D. Petrolekas, S. Balomenou and C.G. Vayenas, J. Electrochem. Soc.145 (4), 1202 (1998).

    CAS  Google Scholar 

  6. S. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic, and C.G. Vayenas, Nature (London),370, 45 (1994).

    Article  CAS  Google Scholar 

  7. C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, in: Modern Aspects of Electrochemistry (J.O'M. Bockris, B.E. Conway and R.E. White, Eds.) Vol. 29, pp. 57–202, Plenum Press, NY, (1995).

    Google Scholar 

  8. C.G. Vayenas, and I.V. Yentekakis, in: Handbook of Catalysis (G. Ertl, H. Knotzinger, and J. Weitcamp, Eds.), VCH Publishers, Weinheim, pp. 1310–1338 (1997).

    Google Scholar 

  9. C.G. Vayenas, S. Bebelis, and S. Ladas, Nature (London),343, 625 (1990).

    Article  CAS  Google Scholar 

  10. C.A. Cavalca, G. Larsen, C.G. Vayenas, and G.L. Haller, J. Phys. Chem.97, 6115 (1993).

    Article  CAS  Google Scholar 

  11. C.G. Vayenas, S. Ladas, S. Bebelis, I.V. Yentekakis, S.G. Neophytides, Y. Jiang, Ch. Karavasilis and C. Pliangos, Electrochimica Acta39, 1849 (1994).

    Article  CAS  Google Scholar 

  12. W. Zipprich, H.-D. Wiemhoefer, U. Voehrer, and W. Goepel, Ber. Bunsenges. Phys. Chem.99, 1406 (1995).

    CAS  Google Scholar 

  13. C. Raptis, Th. Badas, D. Tsiplakides, C. Pliangos and C.G. Vayenas, Stud. In Surf. Sci. & Catal.130, 1283 (2000).

    Google Scholar 

  14. C. Pliangos, C. Raptis, Th. Badas, D. Tsiplakides and C.G. Vayenas, Electrochimica Acta46, 331 (2000).

    Article  CAS  Google Scholar 

  15. D. Tsiplakides and C.G. Vayenas, J. Electrochem. Soc.148(5), E189 (2001).

  16. M. Marwood, and C.G. Vayenas, J. Catal.168, 538 (1997).

    Article  CAS  Google Scholar 

  17. S. Balomenou, G. Pitselis, D. Polydoros, A. Giannikos, A. Vradis, A. Frenzel, C. Pliangos, H. Pütter and C.G. Vayenas, Solid State Ionics136/7, 857 (2000).

    Google Scholar 

  18. S. Wodiuning, F. Bokeloh, J. Nicole and Ch. Comninellis, Electrochemical and Solid State Letters2(6), 281 (1999).

    Google Scholar 

  19. S. Wodiuning, F. Bokeloh and Ch. Comninellis, Electrochimica Acta46, 357 (2000).

    Google Scholar 

  20. A. Palermo, R.M. Lambert, I.R. Harkness, I.V. Yentekakis, O. Mar'ina and C.G. Vayenas, J. Catal.161, 471 (1996).

    Article  CAS  Google Scholar 

  21. O.A. Marina, I.V. Yentekakis, C.G. Vayenas, A. Palermo and R.M. Lambert, J. Catal.166, 218 (1997).

    Article  CAS  Google Scholar 

  22. R.M. Lambert, M. Tikhov, A. Palermo, I.V. Yentekakis and C.G. Vayenas, Ionics.1, 366 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pliangos, C., Raptis, C., Bolzonella, I. et al. Electrochemical promotion of conventional and bipolar reactor configurations for NO reduction. Ionics 8, 372–382 (2002). https://doi.org/10.1007/BF02376050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376050

Keywords

Navigation