Skip to main content
Log in

Extraction of gastric slow waves from electrogastrograms: Combining independent component analysis and adaptive signal enhancement

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The electrogastrogram (EGG), a cutaneous measurement of gastric electrical activity, is a mixture of gastric slow waves and noise. To detect the propagation of gastric slow waves, it is desired to obtain gastric slow waves in each of multichannel EGGs. Recently, independent component analysis (ICA) has shown its efficiency in separating the gastric slow wave from noisy multichannel EGGs. However, this method is not able to recover gastric slow waves in each of the multichannel EGGs. In this paper, a twostage combined method was proposed for extracting gastric slow waves. First, ICA was performed to separate the gastric slow wave component from noisy multichannel EGGs. Second, adaptive signal enhancement with a reference input derived by the ICA in the first stage was employed to extract gastric slow waves in each channel. Quantitative analysis showed that, with the proposed method, the maximum root-mean-square error between the estimated time lag and its theoretical value in the simulations was only 0.65. The results from real EGG data demonstrated that the combined method was able to extract gastric slow waves from individual channels of EGGs which are important to identify the slow wave propagation. Therefore, the proposed method can be used to detect propagation of gastric slow waves from multichannel EGGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, W. C. (1922): ‘The electrogastrogram, and what it shows’,J. Am. Med. Assoc.,78, pp. 1116–1118

    Google Scholar 

  • Amari, S., Cichocki, A. andYang, H. H. (1996): ‘A new learning algorithm for blind signal separation’, in ‘Advances in neural information processing systems 8’ (MIT Press, 1996)

  • Bell, T. J., andSejnowski, T. J. (1995): ‘An information-maximization approach to blind separation, and blind deconvolution’,Neural Comput.,7, pp. 1129–1159

    Google Scholar 

  • Cardoso, J.-F.: ‘Jade for real-valued data’, http:/sig.enst.fr/ cardoso/guidesepsou.html.

  • Cardoso, J.-F. (1998): ‘Blind signal separation: statistical principles’,Proc. IEEE,90, pp. 2009–2026

    Google Scholar 

  • Cardoso, J.-F. (1999): ‘High-order contrasts for independent component analysis’,Neural Comput.,11, pp. 157–192

    Article  Google Scholar 

  • Chen, J. D. Z., Vandewalle, J., andSansen, W. (1989): ‘Adaptive method for cancellation of respiration artifact in electrogastric measurements’,Med. Biol. Eng. Comput.,27, pp. 57–63

    Google Scholar 

  • Chen, J. D. Z., andMcCallum, R. W. (1991): ‘Electrogastrography: measurement, analysis and prospective application’,Med. Biol. Eng. Comput.,29, pp. 339–350

    Google Scholar 

  • Chen, J. D. Z., andMcCallum, R. W. (1993): ‘Clinical application of electrogastrogram’,Am. J. Gastroenterol.,88, pp. 1324–1336

    Google Scholar 

  • Chen, J. D. Z., andLin, Z. (1994): ‘Comparison of adaptive filtering in time-, transform-, and frequency-domain: An electrogastrographic study’,Ann. Biomed. Eng., 22, pp. 423–431

    MathSciNet  Google Scholar 

  • Chen, J. D. Z., Zou, X., Lin, X., Ouyang, S., andLiang, J. (1999): ‘Detection of gastric slow wave propagation from the cutaneous electrogastrogram’,Gastrointest. Liver Physiol.,40, pp. G424-G430

    Google Scholar 

  • Ferrara, E. R., andWidrow, B. (1981): ‘Multichannel adaptive filtering for signal enhancement’,IEEE Acoust. Speech Signal Process,29, pp. 53–62

    Google Scholar 

  • Haykin, S. (2002): ‘Adaptive filter theory, 4th edn’ (Prentice-Hall, Inc., Upper Saddle River, NJ, 2002)

    Google Scholar 

  • Hyvärinen, A. (1999): ‘Fast, and robust fixed-point algorithms for independent component analysis’,IEEE Trans. Neural Netw.,10, pp. 626–634

    Google Scholar 

  • Hyvärinen, A. ‘The fast ica matlab package’.http://www.cis.hut.fi/aapo.

  • Hyvärinen, A. (1999): ‘Survey on independent component analysis’,Neural Comput. Surv.,2, pp. 94–128

    Google Scholar 

  • Hyvärinen, A., Karhunen, J., andOja, E. (2001): ‘Independent component analysis’ (John Wiley & Sons, 2001)

  • Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T. W., andSejnowski, T. J. (2001): ‘Imaging brain dynamics using independent component analysis’,Proc. IEEE,89, pp. 1101–122

    Article  Google Scholar 

  • Koch, K. L., Stewart, W. R., Stern, R. M., andVasey, M. W. (1987): ‘Electrogastrography: current issues in validation and methodology’,Psychophysiology,24, pp. 55–64

    Google Scholar 

  • Kothapalli, B. (1993): ‘Electrogastrogram simulation using a threedimensional model’,Med. Biol. Eng. Comput.,31, pp. 482–486

    Google Scholar 

  • Lee, T.-W. (1998): ‘Independent component analysis: theory and applications’ (Kluwer Academic Publishers, Boston, MA, 1998)

    Google Scholar 

  • Lee, T.-W., Girolami, M., andSejnowski, T. J. (1999): ‘Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources’,Neural Comput.,11, pp. 417–441

    Article  Google Scholar 

  • Lee, T.-W., Bell, A. J., Girolami, M., andSejnowski, T. J. (2000): ‘A unifying information-theoretic framework for independent component analysis’,Comput. Math. Appl.,31, pp. 1–21

    MathSciNet  Google Scholar 

  • Liang, H. (2001): ‘Adaptive independent component analysis of multichannel electrogastrograms’,Med. Eng. Phys.,23, pp. 91–97

    Article  Google Scholar 

  • Liang, H., Yin, F., Lin, Z., andMcCallum, R. W. (2004): ‘A combined method for extraction of gastric slow waves from multichannel electrogastrograms’,Neurogastroenterol. Motil.,16, p. 9.

    Google Scholar 

  • Liang, J., andChen, J. D. Z. (1997): ‘What can be measured from surface electrogastrography’,Dig. Dis. Sci.,42, pp. 1331–1343

    Article  Google Scholar 

  • Lin, Z., andChen, J. D. Z. (1994): ‘Recursive running dct algorithm and its application in adaptive filtering of surface electrical recording of small intestine’,Med. Biol. Eng. Comput.,32, pp. 317–322

    Google Scholar 

  • Lin, Z., Liang, H., andMcCallum, R. W. (2000): ‘Combined methods for recovery of gastric slow waves from multichannel electrogastriograms’,Proc. 22nd Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 1345–1348

  • Lu, W., andRajapakse, J. C. (2001): ‘ICA with reference’,Proc. Third Int. Conf. on ICA and Blind Source Separation, pp. 120–125

  • Makeig, S.: Ica/eeg toolbox. computational neurobiology laboratory, the salk institute.http://www.cnl.salk.edu/tewon/ica_cnl.html.

  • Mintchev, M. P., Kingma, Y. J., andBowes, K. L. (1993): ‘Accuracy of cutaneous recordings of gastric electrical activity’,Gastroenterology,104, pp. 1273–1280

    Google Scholar 

  • Narayan, S. S., Peterson, A. M., andNarasimha, M. J. (1983): ‘Transform domain lms algorithm’,IEEE Trans Acoust. Speech Signal Process,31, pp. 609–614

    Article  Google Scholar 

  • Ohata, M., Matsuomoto, T., Shigematsu, A., andMatsuoka, K. (2003): ‘Independent component analysis of electrogastrogram data’,Proc. 4th Int. Symposium on ICA and Blind Signal Separation, Nara, Japan, pp. 53–58

  • Oppenhem, A., andSchafer, R. (1975): ‘Digital signal processing’ (Prentice-Hall, New Jersey, 1975)

    Google Scholar 

  • Pearlmutter, B. A., andParra, L. C. (1996): ‘A context-sensitive generalization of ica’,Proc. ICONIP, pp. 151–157

  • Sarna, S. K. (1975): ‘Gastrointestinal electrical activity: Terminology’,Gastroenterology,68, pp. 1631–1635

    Google Scholar 

  • Treichler, J. R. (1979): ‘Transient and convergent behavior of the adaptive line enhancer’,IEEE Trans. Acoust. Speech Signal Process.,27, pp. 53–62

    Article  MATH  Google Scholar 

  • Verhagen, M. A. M. T., Samsom, M., Schelven, L. J. V., andSmout, A. J. P. M. (1999): ‘Pitfalls in the analysis of electrogastrographic recordings’,Gastroenterology,117, pp. 453–460

    Article  Google Scholar 

  • Wang, Z. S., Cheung, J. Y., andChen, J. D. Z. (1999): ‘Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network’,Med. Biol. Eng. Comput.,37, pp. 80–86

    Google Scholar 

  • Wang, Z. S., andChen, J. D. Z. (2001): ‘Blind separation of slow waves and spikes from gastrointestinal myo-electrical recordings’,IEEE Trans. Inform. Technol. Biomed.,5, pp. 133–137

    Google Scholar 

  • Widrow, B., Glover, J. R., Mccool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Dong, E., andGoodlin, R. C. (1975): ‘Adaptive noise canceling: principles and applications’,Proc. IEEE,63, pp. 1692–1716

    Google Scholar 

  • Zeidler, J. R. (1990): ‘Performance analysis of lms adaptive prediction filters’,Proc. IEEE,78, pp. 1781–1806

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H. Extraction of gastric slow waves from electrogastrograms: Combining independent component analysis and adaptive signal enhancement. Med. Biol. Eng. Comput. 43, 245–251 (2005). https://doi.org/10.1007/BF02345962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345962

Keywords

Navigation