Skip to main content
Log in

Summary

To examine whether the so-called musculovenous pump counteracts the development of interstitial edema in the lower extremities of man in the upright position, the volume changes in the calf which occured during twenty minutes of rhythmic muscular exercise were measured in twenty-three subjects by impedance-plethysmography. The results were compared with the volume increase found during quiet relaxed standing for the same length of time. Contrary to the hypothesis, and edema-protective effect of the musculovenous pump could only be shown in about half the number of the subjects. In the others, muscular exercise led to increases in calf volume which were higher than those measured in the normal upright position. These results show that the calf muscle pump does not generally have a edemaprotective effect but rather that muscle contractions also activate mechanisms which stimulate the extravasation of fluid. p ]In a second test-series with twenty subjects, changes in calf volume were measured during the course of the day. In nearly all cases, the calf volume was greater in the evening than in the morning. It could be shown that the volume increases in the evening are caused by an increase in extravascular fluid. Compared to the increase in extravascular volume occuring during twenty minutes, in a normal upright position, the accumulation of extravascular fluid during the day is, however, remarkably low. Although it is still unknown how insterstitial edema in man's lower extremities is prevented during the day, these findings lead to the hypothesis that the edema-preventing mechanisms, for instance the muscle-lymphpump, do not become maximally effective until a certain volume has accumulated in the interstitial space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnoldi CC (1965) Venous pressure in the leg of healthy human subjects at rest and during muscular exercise in the nearly erect position. Acta Chir Scand 130:570–583

    CAS  PubMed  Google Scholar 

  • Asmussen E (1942) The distribution of the blood between the lower extremities and the rest of the body. Acta Physiol Scand 5:31–38

    Google Scholar 

  • Asmussen E, Christensen EH, Nielsen M (1939a) Pulsfrequenz und Körperstellung. Skand Arch Physiol 81:190–203

    Google Scholar 

  • Asmussen E, Christensen EH, Nielsen M (1939b) über die Kreislaufinsuffizienz in stehender Stellung bei normalem arteriellem Druck und herabgesetztem Minutenvolumen. Skand Arch Physiol 81:214–224

    Google Scholar 

  • Atzler E, Herbst R (1923) Die Schwankungen des Fu\volumens und deren Beeinflussung. Z Ges Exp Med 38:137–152

    Google Scholar 

  • Aukland K (1973) Autoregulation of interstitial fluid volume. Scand J Clin Lab Invest 31:247–254

    CAS  PubMed  Google Scholar 

  • Barcroft H, Dornhorst AC (1949) Blood flow through the human calf during rhythmic exercise. J Physiol [Lond] 109:402–411

    CAS  Google Scholar 

  • Engeset A, Olszewski W, Jaeger PM, Sokolowski J, Theodorsen L (1977) Twenty-four hour variation in flow and composition of leg lymph in normal men. Acta Physiol Scand 99:140–148

    CAS  PubMed  Google Scholar 

  • Entrup R, Paiewonsky D, Hughes M, Jue J, Bittar D, Wegria R (1966) Effect of posture on formation and evacuation of lymph. Am J Physiol 210:943–949

    CAS  PubMed  Google Scholar 

  • Fadnes HO, Reed RK, Aukland K (1978) Mechanisms regulating interstitial fluid volume. Lymphology 11:165–169

    CAS  PubMed  Google Scholar 

  • Folkow B, Haglund U, Jodal M, Lundgren O (1971) Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol Scand 81:157–163

    CAS  PubMed  Google Scholar 

  • Gauer OH (1972) Kreislauf des Blutes. In: Gauer OH, Kramer K, Jung R, Physiologie des Menschen, Bd. 3 Herz und Kreislauf. Urban & Schwarzenberg, München, p 250

    Google Scholar 

  • Henriksen O, Sejrsen P (1977) Local reflex in microcirculation in human sceletal muscle. Acta Physiol Scand 99:19–26

    CAS  PubMed  Google Scholar 

  • Henry JP, Gauer OH (1950) The influence of temperature upon venous pressure in the foot. J Clin Invest 29:855–861

    CAS  PubMed  Google Scholar 

  • Hildebrandt G (1960) Die Durchblutung der menschlichen Wadenmuskulatur bei orthostatischer Belastung. Pflügers Arch 272:6–7

    Article  CAS  Google Scholar 

  • Höjensgard C, Stürup H (1953) Static and dynamic pressures in superficial and deep veins of the lower extremity in man. Acta Physiol Scand 27:49–67

    Google Scholar 

  • Hörig C (1976) Impedanzplethysmographische Untersuchungen von VolumenÄnderungen an den unteren ExtremitÄten bei Lagewechsel. Dissertation, Kiel

    Google Scholar 

  • Immich H (1974) Medizinische Statistik. Schattauer, Stuttgart, p 180

    Google Scholar 

  • Kirsch K, Merke J, Hinghofer-Szalkay H (1980) Fluid volume distribution within superficial shell tissues along body axis during changes of body posture in man. Pflügers Arch 383:195–201

    CAS  PubMed  Google Scholar 

  • Kriessmann A (1975) Periphere phlebodynamometrie. VASA [Suppl. 4]

  • Krug H, Schlicher L (1960) Die Dynamik des venösen Rückstromes. VEB Thieme, Leipzig, p 42 ff

    Google Scholar 

  • Looke H (1936) über die VolumenÄnderungen der unteren ExtremitÄten unter verschiedenen Bedingungen. Arb Physiol 9:496–504

    Google Scholar 

  • Ludbrook J, Loughlin J (1964) Regulation of volume in postarteriolar vessels of the lower limbs. Am Heart J 67:493–507

    Article  CAS  PubMed  Google Scholar 

  • Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissue during exercise. Acta Physiol Scand 85:258–269

    CAS  PubMed  Google Scholar 

  • Marées H de (1974) HÄmodynamik der orthostatischen Sofortregulation. In: Dengler HD (ed) Das Orthostasesyndrom, Schattauer, Stuttgart pp 25–38

    Google Scholar 

  • Mellander S, öberg B, Odelraum H (1964) Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol Scand 61:34–48

    CAS  PubMed  Google Scholar 

  • Nicolaysen G, Noddeland H, Aukland K (1980) Plasma colloid osmotic pressure on venous blood from the foot of man in the sitting position. Acta Physiol Scand 109:C4

    Google Scholar 

  • Nyboer J (1970) Electrical impedance plethysmography. 2ndedition. Springfield, Illinois, p 34

    Google Scholar 

  • Olszewski W, Engeset A, Jaerger PM, Sokolowski J, Theodorsen L (1977) Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 99:149–155

    CAS  PubMed  Google Scholar 

  • Pollack AA, Wood EH (1949) Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol 1:649–662

    Google Scholar 

  • Reeves JT, Grover RF, Blount SG, Filley GF (1961) Cardiac output response to standing and treadmill walking. J Appl Physiol 16:283–288

    CAS  PubMed  Google Scholar 

  • Rieck A, Hildebrandt G (1974) über tagesrhythmische VerÄnderungen des Beinvolumens bei orthostatischer Belastung. Z Phlebol Proktol 3:1–13

    Google Scholar 

  • Rieckert H (1970) Die HÄmodynamik des venösen Rückflusses aus der unteren ExtremitÄt. Arch Kreislauf 62:293–318

    CAS  Google Scholar 

  • Sachs L (1974) Angewandte Statistik. 4. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schnizer W, Klatt H, Baeker H, Rieckert H (1978) Vergleich von szintigraphischen und plethysmographischen Messungen zur Bestimmung des kapillÄren Filtrationskoeffizienten in der menschlichen ExtremitÄt. Basic Res Cardiol 73:77–84

    Article  CAS  PubMed  Google Scholar 

  • Schnizer W, Hinneberg H, Moser H, Küper K (1979) Intra- und extravascular volume changes in the human forearm after static hand grip exercise. Eur J Appl Physiol 41:131–140

    Article  CAS  Google Scholar 

  • Sejrsen P, Henriksen O, Paaske WP (1981) Effects of orthostatic blood pressure changes upon capillary filtration-absorption rate in the human calf. Acta Physiol Scand 111:287–291

    CAS  PubMed  Google Scholar 

  • Sejrsen P, Henriksen O, Paaske WP, Nielsen SL (1981) Duration of increase in vascular volume during venous stasis. Acta Physiol Scand 111:293–298

    CAS  PubMed  Google Scholar 

  • Starling EH (1886) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    Google Scholar 

  • Stick C (1981) Zur Problematik der Messung filtrationsbedingter VolumenÄnderungen der ExtremitÄten mit der Impedanzplethysmographie. Eur J Appl Physiol 47:405–418

    Article  CAS  Google Scholar 

  • Taylor AE (1981) Capillary fluid filtration. Starling forces and lymph flow. Circ Res 49:557–575

    CAS  PubMed  Google Scholar 

  • Taylor AE, Gibson H, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of insterstitial fluid volume. Lymphology 6:192–208

    CAS  PubMed  Google Scholar 

  • Waterfield RL (1931) The effect of posture on the volume of the leg. J Physiol [Lond] 72:121–131

    Google Scholar 

  • White JC, Field ME, Drinker CK (1933) On the protein content and normal flow of lymph from the foot of the dog. Am J Physiol 103:34–44

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stick, C., Stöfen, P. & Witzleb, E. On physiological edema in man's lower extremity. Europ. J. Appl. Physiol. 54, 442–449 (1985). https://doi.org/10.1007/BF02337192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337192

Keywords

Navigation