Skip to main content
Log in

Lipids of arctic charr,Salvelinus alpinus (L.) II. Influence of dietary fatty acids on the elongation and desaturation of linoleic and linolenic acid

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Arctic charr,Salvelinus alpinus L. were fed five test diets containing 0% or 1% of different polyunsaturated fatty acids (PUFA) for 93 days. The fish were injected intraperitoneally with (1−14C)–18:2(n−6) or (1−14C)–18:3(n−3), and the bioconversion to longer chain PUFA studied. The conversion rate in neutral lipids was slow, with most label found as the fatty acid injected, while extensive modification took place prior to or during incorporation into polar lipids. Linolenic acid was preferred over linoleic acid as substrate for elongation and desaturation regardless of diet. In polar lipids, the predominant products of (1−14C)–18:2(n−6) metabolism were generally 20:3(n−6) and 20:4(n−6), while 18:4(n−3), 20:5(n−3) and 22:6(n−3) were the major products of (1−14C)–18:3(n−3) metabolism. The lack of radioactivity in 22:5(n−6) suggests that Δ 4 desaturation is specific for (n−3) PUFA. Feeding the PUFA deficient diet reduced the Δ 5 desaturation compared to fish maintained on PUFA supplemented diets. The Δ 6 desaturation was only reduced in fish fed C18 PUFA and injected with (1−14C)–18:3(n−3). Longer chain C20 and C22 PUFA, particularly those of the (n−3) family, exerted some inhibition on the elongation and desaturation of injected fatty acids compared to those fed C18 PUFA. The incorporation of radiolabelled fatty acids into polar lipids of fish fed a commercial diet was very low, and the desaturation neglectible in both polar and neutral lipids, showing that Arctic charr under culture conditions do not convert short chain PUFA to longer chain metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  Google Scholar 

  • Brenner, R.R. and Peluffo, R.O. 1966. Effect of saturated and unsaturated fatty acids on the desaturationin vitro of palmitic, stearic, oleic, linoleic and linolenic acids. J. Biol. Chem. 241: 5213–5219.

    PubMed  Google Scholar 

  • Castell, J.D., Lee, D.J. and Sinnhuber, R.O. 1972. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): Lipid metabolism and fatty acid composition. J. Nutr. 102: 93–100.

    PubMed  Google Scholar 

  • Dang, A.Q., Kemp, K., Faas, F.H. and Carter, W.J. 1989. Effects of dietary fats on fatty acid composition and Δ 5 Desaturase in normal and diabetic rats. Lipids 24: 882–889.

    PubMed  Google Scholar 

  • De Torrengo, M.P. and Brenner, R.R. 1976. Influence of environmental temperature on the fatty acid desaturation and elongation activity of fish (Pimelodus maculatus) liver microsomes. Biochem. Biophys. Acta. 424: 36–44.

    PubMed  Google Scholar 

  • Garg, M.L., Sebokova, E., Thomson, A.B.R. and Clandinin, M.T. 1988. Δ 6-Desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or n−3 fatty acids. Biochem. J. 249: 351–356.

    PubMed  Google Scholar 

  • Henderson, R.J. and Tocher, D.R. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26: 281–347.

    Article  PubMed  Google Scholar 

  • Kanazawa, A., Teshima, S.-I. and Ono, K. 1979. Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comp. Biochem. Physiol. 63B: 295–298.

    Article  Google Scholar 

  • Kanazawa, A., Teshima, S.-I., Sakamoto, M. and Awal, M.A. 1980a. Requirements ofTilapia zilli for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 46: 1353–1356.

    Google Scholar 

  • Kanazawa, A., Teshima, S.-I. and Imai, K. 1980b. Biosynthesis of fatty acids inTilapia zilli and puffer fish. Mem. Fac. Kagoshima Univ. 29: 313–318.

    Google Scholar 

  • Leger, C., Fremont, L. and Boudon, M. 1981. Fatty acid composition of lipids in the trout. I. Influence of dietary fatty acids on the triglyceride fatty acid desaturation in serum, adipose tissue, liver, white and red muscle. Comp. Biochem. Physiol. 69B: 99–105.

    Google Scholar 

  • Olsen, R.E., Henderson, R.J. and McAndrew, B.J. 1990. The conversion of linoleic and linolenic acid to longer chain polyunsaturated fatty acids byTilapia (Oreochromis) nilotica in vivo. Fish Physiol. Biochem. 8: 261–270.

    Google Scholar 

  • Olsen, R.E., Henderson, R.J. and Ringo, E. 1991. Lipids of Arctic charr,Salvelinus alpinus (L.) I. Dietary induced changes in lipid class and fatty acid composition. Fish Physiol. Biochem. 9: 151–164.

    Article  Google Scholar 

  • Sargent, J.R., Henderson, R.J. and Tocher, D.R. 1989. The Lipids.In Fish Nutrition. pp. 153–218. Edited by J.E. Halver, Academic Press, New York.

    Google Scholar 

  • Takeuchi, T. and Watanabe, T. 1977. Requirement of carp for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 43: 541–551.

    Google Scholar 

  • Takeuchi, T., Watanabe, T. and Nose, T. 1979. Requirement of essential fatty acids of Chum salmon (Oncorhynchus keta) in freshwater environment. Bull. Jap. Soc. Sci. Fish. 45: 1319–1323.

    Google Scholar 

  • Takeuchi, T., Arai, S., Watanabe, T. and Shimma, Y. 1980. Requirement of eelAnguilla japonica for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 46: 345–353.

    Google Scholar 

  • Takeuchi, T., Satoh, S. and Watanabe, T. 1983. Requirement ofTilapia nilotica for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 49: 1127–1134.

    Google Scholar 

  • Teshima, S.-I., Kanazawa, A. and Sakamoto, M. 1982. Essential fatty acids ofTilapia nilotica. Mem. Fac. Fish. Kagoshima Univ. 31: 201–204.

    Google Scholar 

  • Watanabe, T., Ogino, C., Koshiishi, Y. and Matsunaga, T. 1974. Requirement of rainbow trout for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 40: 493–499.

    Google Scholar 

  • Yu, T.C. and Sinnhuber, R.O. 1976. Growth response of rainbow trout (Salmo gairdneri) to dietary n−3 and n−6 fatty acids. Aquaculture 8: 309–317.

    Google Scholar 

  • Yu, T.C. and Sinnhuber, R.O. 1979. Effect of dietary n−3 and n−6 fatty acids on growth and feed conversion efficiency of coho salmon (Oncorhynchus kisutch). Aquaculture 16: 31–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, R.E., Ringø, E. Lipids of arctic charr,Salvelinus alpinus (L.) II. Influence of dietary fatty acids on the elongation and desaturation of linoleic and linolenic acid. Fish Physiol Biochem 9, 393–399 (1992). https://doi.org/10.1007/BF02274220

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274220

Keywords

Navigation