Skip to main content
Log in

Multifractal dimensions for branched growth

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A recently proposed theory for diffusion-limited aggregation (DLA), which models this system as a random branched growth process, is reviewed. Like DLA, this process is stochastic, and ensemble averaging is needed in order to define multifractal dimensions. In an earlier work by Halsey and Leibig, annealed average dimensions were computed for this model. In this paper, we compute the quenched average dimensions, which are expected to apply to typical members of the ensemble. We develop a perturbative expansion for the average of the logarithm of the multifractal partition function; the leading and subleading divergent terms in this expansion are then resummed to all orders. The result is that in the limit where the number of particlesn→∞, the quenched and annealed dimensions areidentical; however, the attainment of this limit requires enormous values ofn. At smaller, more realistic values ofn, the apparent quenched dimensions differ from the annealed dimensions. We interpret these results to mean that while multifractality as an ensemble property of random branched growth (and hence of DLA) is quite robust, it subtly fails for typical members of the ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Witten, Jr., and L. M. Sander,Phys. Rev. Lett. 47:1400 (1981).

    Google Scholar 

  2. P. Meakin,Phys. Rev. A 27:1495 (1983).

    Google Scholar 

  3. P. Meakin, InPhase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. Lebowitz, eds. (Academic Press, New York, 1988).

    Google Scholar 

  4. T. Vicsek,Fractal Growth Phenomena (World Scientific, Singapore, 1989).

    Google Scholar 

  5. H. Gould, F. Family, and H. E. Stanley,Phys. Rev. Lett. 50:686 (1983); T. Nagatani,Phys. Rev. A 36:5812 (1987);J. Phys. A 20:L381 (1987); P. Barker and R. C. Ball,Phys. Rev. A 42:6289 (1990).

    Google Scholar 

  6. X. R. Wang, Y. Shapir, and M. Rubinstein,Phys. Rev. A 39:5974 (1989);J. Phys. A 22:L507 (1989).

    Google Scholar 

  7. L. Pietronero, A. Erzan, and C. J. G. Evertsz,Phys. Rev. Lett. 61:861 (1988);Physica A 151:207 (1988).

    Google Scholar 

  8. P. Meakin, H. E. Stanley, A. Coniglio, and T. A. Witten, Jr.,Phys. Rev. A 32:2364 (1985); C. Amitrano, A. Coniglio, and F. di Liberto,Phys. Rev. Lett. 57:1016 (1986); C. Amitrano,Phys. Rev. A 39:6618 (1989).

    Google Scholar 

  9. T. C. Halsey, P. Meakin, and I. Procaccia,Phys. Rev. Lett. 56:854 (1986); T. C. Halsey,Phys. Rev. Lett. 59:2067 (1987);Phys. Rev. A 38:4749 (1988).

    Google Scholar 

  10. Y. Hayakawa, S. Sato, and M. Matsushita,Phys. Rev. A 36:1963 (1987); R. C. Ball and O. Rath Spivack,J. Phys. A 23:5295 (1990).

    Google Scholar 

  11. T. C. Halsey and M. Leibig,Phys. Rev. A 46:7792 (1992).

    Google Scholar 

  12. T. C. Halsey,Phys. Rev. Lett. 72:1228 (1994).

    Google Scholar 

  13. R. Blumenfeld and A. Aharony,Phys. Rev. Lett. 62:2977 (1989); R. C. Ball and R. Blumenfeld,Phys. Rev. A 44:828 (1991); S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H. E. Roman, and H. E. Stanley,65:603 (1990); B. Mandelbrot and C. J. G. Evertsz,Nature 348:143 (1990); S. Schwarzer, J. Lee, S. Havlin, H. E. Stanley, and P. Meakin,Phys. Rev. A 43:1134 (1991).

    Google Scholar 

  14. B. B. Mandelbrot, H. Kaufman, A. Vespinani, I. Yekutieli, and C. H. Lam,Europhys. Lett. 29:599 (1995).

    Google Scholar 

  15. P. Ossadnik,Physica A 195:319 (1993).

    Google Scholar 

  16. M. Muthukumar,Phys. Rev. Lett. 50:839 (1983); S. Tolman and P. Meakin,Phys. Rev. A 40:428 (1989).

    Google Scholar 

  17. R. Brady and R. C. Ball,Nature 309:225 (1984); J. Nittmann, G. D'accord, and H. E. Stanley,Nature 314:141 (1985); D. Kessler, J. Koplik, and H. Levine,Adv. Phys. 37:255 (1988).

    Google Scholar 

  18. P. Meakin,Phys. Rev. Lett. 51:1119 (1983); M. Kolb, R. Botet, and R. Jullien,Phys. Rev. Lett. 51:1123 (1983); P. Meakin, G. Li, L. M. Sander, H. Yan, F. Guinea, O. Pla, and E. Louis, inDisorder and Fracture, J. C. Charmet, S. Roux, and E. Guyon, eds. (Plenum Press, New York, 1990).

    Google Scholar 

  19. A. Renyi,Probability Theory (North-Holland, Amsterdam, 1970); B. B. Mandelbrot,Ann. Isr. Phys. Soc. 225 (1977); H. G. E. Hentschel and I. Procaccia,Physica 8D:435 (1983); U. Frisch and G. Parisi, inTurbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1985), p. 84.

    Google Scholar 

  20. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman,Phys. Rev. A 33:1141 (1986).

    Google Scholar 

  21. M. E. Cates and T. A. Witten,Phys. Rev. A 35:1809 (1987); T. C. Halsey, InFractals: Physical Origin and Properties, L. Pietronero, ed. (Plenum Press, New York, 1989).

    Google Scholar 

  22. S. Redner,Am. J. Phys. 58:267 (1990).

    Google Scholar 

  23. B. B. Mandelbrot, InFractals: Physical Origin and Properties, L. Pietronero, ed. (Plenum Press, New York, 1989); A. B. Chhabra and K. R. Sreenivasan,Phys. Rev. A 43:1114 (1991).

    Google Scholar 

  24. T. C. Halsey, K. Honda, and B. Duplantier, Unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halsey, T.C., Honda, K. & Duplantier, B. Multifractal dimensions for branched growth. J Stat Phys 85, 681–743 (1996). https://doi.org/10.1007/BF02199360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199360

Key Words

Navigation