Skip to main content
Log in

Absence of renormalization group pathologies near the critical temperature. Two examples

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider real-space renormalization group transformations for Ising-type systems which are formally defined by

$$\exp \left[ { - H'(\sigma ')} \right] = \sum\limits_\sigma {T(\sigma ,\sigma ')} \exp \left[ { - H(\sigma )} \right]$$

whereT(σ, σ′) is a probability kernel, i.e., ∑σ′ T(σ,σ′) = 1 for every configuration σ. For each choice of the block spin configuration σ′, let σ′, let μσ′ be the measure on spin configurations σ which is formally given by taking the probability of σ to be proportional toT(σ, σ′) exp[−H(σ)]. We give a condition which is sufficient to imply that the renormalized HamiltonianH′ is defined. Roughly speaking, the condition is that the collection of measures μσ′ is in the high-temperature phase uniformly in the block spin configuration σ′. The proof of this result uses methods of Olivieri and Picco. We use our theorem to prove that the first iteration of the renormalization group transformation is defined in the following two examples: decimation with spacingb = 2 on the square lattice with β < 1.36β c and the Kadanoff transformation with parameterp on the trian gular lattice in a subset of the β,p plane that includes values of β greater than β c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Benfatto, E. Marinari, and E. Olivieri, Some numerical results on the block spin transformation for the 2D Ising model at the critical point,J. Stat. Phys. 78:731 (1995).

    Google Scholar 

  2. D. Brydges, A short course on cluster expansions, inCritical Phenomena, Random Systems, Gauge Theories, K. Osterwalder, and R. Stora, eds. (Elsevier, Amsterdam, 1986).

    Google Scholar 

  3. M. Cassandro and G. Gallavotti, The Lavoisier law and the critical point,Nuovo Cimento B25:691 (1975).

    Google Scholar 

  4. R. L. Dobrushin and S. B. Shlosman, Completely analytic Gibbs fields, inStatistical Physics and Dynamical Systems (Birkhauser, Boston, 1985); Constructive criterion for the uniqueness of Gibbs field, inStatistical Physics and Dynamical Systems (Birkhauser, Boston, 1985); Completely analytical interactions: constructive description,J. Stat. Phys. 46:983 (1987).

    Google Scholar 

  5. R. B. Griffiths and P. A. Pearce, Position-space renormalization group transformations: Some proofs and some problems,Phys. Rev. Lett. 41:917 (1978).

    Google Scholar 

  6. R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization group transformations,J. Stat. Phys. 20:499 (1979).

    Google Scholar 

  7. R. B. Griffiths, Mathematical properties of renormalization group transformations,Physica 106A:59 (1981).

    Google Scholar 

  8. R. B. Israel, Banach algebras and Kadanoff transformations, inRandom Fields (Esztergom, 1979), Vol. II, J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981).

    Google Scholar 

  9. I. A. Kashapov, Justification of the renormalization-group method,Theor. Math. Phys. 42:184 (1980).

    Google Scholar 

  10. T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point,J. Stat. Phys. 72:15 (1993).

    Google Scholar 

  11. B. Simon,The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, Princeton, New Jersy, 1993).

    Google Scholar 

  12. F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization group transformations,J. Stat. Phys. 72:1169 (1993).

    Google Scholar 

  13. F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case,Commun. Math. Phys. 161:447 (1994); Approach to equilibrium of Glauber dynamics in the one phase region II. The general case,Commun. Math. Phys. 161:487 (1994).

    Google Scholar 

  14. F. Martinelli and E. Olivieri, Instability of renormalization group pathologies under decimation,J. Stat. Phys. 79:25 (1995).

    Google Scholar 

  15. Th. Niemeijer and M. J. van Leeuwen, Renormalization theory for Ising-like spin systems, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).

    Google Scholar 

  16. E. Olivieri, On a cluster expansion for lattice spin systems: a finite size condition for the convergence,J. Stat. Phys. 50:1179 (1988).

    Google Scholar 

  17. E. Olivier and P. Picco, Cluster expansion forD-dimensional lattice systems and finite volume factorization properties,J. Stat. Phys. 59:221 (1990).

    Google Scholar 

  18. M. Ould-Lemrabott, Effect of the block spin configuration on the location of β c in the 2-D Ising models, submitted toJ. Stat. Phys. (1996).

  19. R. H. Schonmann and S. B. Shlosman, Complete analyticity for 2D Ising completed,Commun. Math. Phys. 170:453 (1995).

    Google Scholar 

  20. S. B. Shlosman, Uniqueness and half-space nonuniqueness of Gibbs states in Czech model,Theor. Math. Phys. 66:284 (1986).

    Google Scholar 

  21. A. C. D. van Enter, Ill-defined block-spin transformations at arbitrarily high temperatures.J. Stat. Phys. 83:761 (1996).

    Google Scholar 

  22. A. C. D. van Enter, On the possible failure of the Gibbs property for measures on lattice systems, to appear inMarkov Processes and Related Fields.

  23. A. C. D. van Enter, R. Fernández, and R. Kotecký, Pathological behavior of renormalization group maps at high fields and above the transition temperature,J. Stat. Phys. 79:969 (1995).

    Google Scholar 

  24. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong,Phys. Rev. Lett. 66:3253 (1991); Regularity properties and pathologies of position-space renormalization group transformations,Nucl. Phys. B (Proc. Suppl.) 20:48 (1991); Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory,J. Stat. Phys. 72:879 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, K., Kennedy, T. Absence of renormalization group pathologies near the critical temperature. Two examples. J Stat Phys 85, 607–637 (1996). https://doi.org/10.1007/BF02199358

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199358

Key Words

Navigation