Skip to main content
Log in

Continuum limits and exact finite-size-scaling functions for one-dimensionalO(N)-invariant spin models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We solve exactly the general one-dimensionalO(N)-invariant spin model taking values in the sphereS N−1, with nearest-neighbor interactions, in finite volume with periodic boundary conditions, by an expansion in hyperspherical harmonics. The possible continuum limits are discussed for a general one-parameter family of interactions and an infinite number of universality classes is found. For these classes we compute the finite-size-scaling functions and the leading corrections to finite-size scaling. A special two-parameter family of interactions (which includes the mixed isovector/isotensor model) is also treated and no additional universality classes appear. In the appendices we give new formulae for the Clebsch-Gordan coefficients and 6−j symbols of theO(N) group, and some new generalizations of the Poisson summation formula; these may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Polyakov,Phys. Lett. B 59:79 (1975).

    Google Scholar 

  2. E. Brézin and J. Zinn-Justin,Phys. Rev. B 14:3110 (1976).

    Google Scholar 

  3. W. A. Bardeen, B. W. Lee, and R. E. Shrock,Phys. Rev. D 14:985 (1976).

    Google Scholar 

  4. J. B. Kogut,Rev. Mod. Phys. 51:659 (1979), Section VIII.C.

    Google Scholar 

  5. S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal,Phys. Rev. Lett. 71:3906 (1993).

    Google Scholar 

  6. S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal,Nucl. Phys. B (Proc. Suppl.) 34:129 (1994).

    Google Scholar 

  7. S. Caracciolo, R. G Edwards, A. Pelissetto, and A. D. Sokal, Phase diagram and universality classes ofRP N−1 and mixed isovector/isotensor σ-models in two dimensions, in preparation.

  8. K. Binder,J. Comput. Phys. 59:1 (1985).

    Google Scholar 

  9. V. Privman, ed.,Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  10. T. Mendes and A. D. Sokal,Phys. Rev. D 53:3438 (1996).

    Google Scholar 

  11. M. Lüscher, P. Weisz, and U. Wolff,Nucl. Phys. B 359:221 (1991).

    Google Scholar 

  12. J.-K. Kim,Phys. Rev. Lett. 70:1735 (1993)Nucl. Phys. B (Proc. Suppl.) 34:702 (1994);Phys. Rev. D 50:4663 (1994);Europhys. Lett. 28:211 (1994);Phys. Lett. B 345:469 (1995).

    Google Scholar 

  13. S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal,Phys. Rev. Lett. 74:2969 (1995).

    Google Scholar 

  14. A. Erdelyiet al. (Bateman Manuscript Project),Higher Transcendental Functions, Vol. II (McGraw-Hill, New York, 1953).

    Google Scholar 

  15. C. Müller,Spherical Harmonics (Springer-Verlag, Berlin, 1966).

    Google Scholar 

  16. R. T. Seeley,Am. Math. Monthly 73(4 Part II):115–121 (1966) [published separately asPapers in Analysis, Number 11 of the Herbert Ellsworth Slaught Memorial Papers (Mathematical Association of America, Buffalo, New York, 1966)].

    Google Scholar 

  17. A. Wawrzyńczyk,Group Representations and Special Functions (Reidel, Dordrecht, 1984), pp. 322–336.

    Google Scholar 

  18. J. Avery,Hyperspherical Harmonics, (Kluwer, Dordrecht, 1989), pp. 1–46.

    Google Scholar 

  19. N. Ja. Vilenkin and A. U. KlimykRepresentation of Lie Groups and Special Functions (Kluwer, Dordrecht, 1991), Vol. I, pp. 291–295.

    Google Scholar 

  20. G. S. Joyce,Phys. Rev. 155:478 (1967).

    Google Scholar 

  21. C. Domb,J. Phys. C 5:1417 (1972).

    Google Scholar 

  22. C. Domb,J. Phys. A. 9:983 (1976).

    Google Scholar 

  23. P. S. English, D. L. Hunter, and C. Domb,J. Phys. A 12:2111 (1979).

    Google Scholar 

  24. S. McKenzie, InPhase Transitions, M. Lévy, J.-C. Le Guillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982), pp. 271–289.

    Google Scholar 

  25. M. Stone,Nucl. Phys. B 152:97 (1979).

    Google Scholar 

  26. E. Rabinovici and S. Samuel,Phys. Lett. 101B:323 (1981).

    Google Scholar 

  27. P. Rossi and Y. Brihaye,Physica A 126:237 (1984).

    Google Scholar 

  28. M. Campostrini, A. Cucchieri, T. Mendes, A. Pelissetto, P. Rossi, A. D. Sokal, and E. Vicari,Nucl. Phys. B (Proc Suppl.) 47:759 (1996).

    Google Scholar 

  29. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, In preparation.

  30. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari,Nucl. Phys. B (Proc. Suppl.) 47:755 (1996).

    Google Scholar 

  31. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari,Phys. Rev. D 54:1782 (1996).

    Google Scholar 

  32. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari,Phys. Rev. B 54:7301 (1996).

    Google Scholar 

  33. A. Cucchieri, T. Mendes, and A. Pelissetto, In preparation.

  34. E. Seiler and K. Yildrim, New universality classes in one-dimensionalO(N)-invariant spin-models with ann-parametric action, Max-Planck-Institut preprint MPI-PTh/96-8 (February 1996).

  35. H. E. Stanley,Phys. Rev. 179:570 (1969).

    Google Scholar 

  36. S. Helgason,Groups and Geometric Analysis (Academic Press, Orlando, Florida, 1984).

    Google Scholar 

  37. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products (Academic Press, San Diego, California, 1980).

    Google Scholar 

  38. H. E. Stanley, M. Blume, K. Matsuno, and S. Milošević,J. Appl. Phys. 41:1278 (1970).

    Google Scholar 

  39. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari,Nucl. Phys. B 459:207 (1996).

    Google Scholar 

  40. H. P. McKean, Jr.,Stochastic Integrals (Academic Press, New York, 1969).

    Google Scholar 

  41. M. Fukushima,Dirichlet Forms and Markov Processes (North-Holland, Amsterdam, 1980).

    Google Scholar 

  42. A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1960).

    Google Scholar 

  43. I. M. Gel'fand and G. E. Shilov,Generalized Functions, Vol I (Academic Press, New York, 1964).

    Google Scholar 

  44. R. F. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).

    Google Scholar 

  45. V. S. Vladimirov,Generalized Functions in Mathematical Physics (Mir Moscow 1979).

    Google Scholar 

  46. R. E. Bellman,A Brief Introduction to Theta Functions (Holt, Rinehart & Winston, New York, 1961).

    Google Scholar 

  47. E. Hille,Analytic Function Theory, Vol. II (Ginn, Boston, 1962).

    Google Scholar 

  48. D. Mumford,Tata Lectures on Theta, 3 vols. (Birkhäuser, Boston, 1983–1991).

    Google Scholar 

  49. L. Alvarez-Gaumé, G. Moore, and C. Vafa,Commun. Math. Phys. 106:1 (1986).

    Google Scholar 

  50. A. Erdelyiet al. (Bateman Manuscript Project),Higher Transcendental Functions, Vol. I (McGraw-Hill, New York, 1953).

    Google Scholar 

  51. P. Henrici,Applied and Computational Complex Analysis, Vol. 2 (Wiley, New York, 1977).

    Google Scholar 

  52. C. Itzykson and J. M. Drouffe,Statistical Field Theory, Vol. I (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cucchieri, A., Mendes, T., Pelissetto, A. et al. Continuum limits and exact finite-size-scaling functions for one-dimensionalO(N)-invariant spin models. J Stat Phys 86, 581–673 (1997). https://doi.org/10.1007/BF02199114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199114

Key Words

Navigation