Skip to main content
Log in

The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In previous work we have defined statistical equilibrium states for 2D incompressible Euler equations. We study here the relaxation process toward equilibrium. This leads to a natural modeling of the small scales in turbulent flows, which might be relevant for meteorological and oceanographic applications. Numerical simulations illustrating the performance of these new models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Arnold,Les méthodes mathématiques de la mécanique classique (Mir, 1976).

  2. C. Basdevant and R. Sadourny, Modélisation des échelles virtuelles dans la simulation numérique des écoulements turbulents bidimensionnels,J. Mec. Theor. Appl. (NS1983:243–269.

  3. X. J. Carton, G. R. Flierl, and L. M. Polvani, The generation of tripoles from unstable axisymmetric isolated vortex structure,Europhys. Lett. 9(4):339–344 (1989).

    Google Scholar 

  4. X. Carton and B. Legras, The life-cycle of tripoles in two-dimensional incompressible flows,J. Fluid Mech., to appear.

  5. G. Choquet,Lectures on Analysis, Vol. II (Benjamin, New York, 1969).

    Google Scholar 

  6. A. Chorin,Statistical Mechanics and Vortex Motion (American Mathematical Society, Providence, Rhode Island, 1991).

    Google Scholar 

  7. M. A. Denoix, Thesis, Institut de mécanique de Grenoble (1992).

  8. M. A. Denoix, J. Sommeria, and A. Thess, Two-dimensional turbulence: The prediction of coherent structures by statistical mechanics, inProceedings of the 7th Beer-Sheva Seminar on M.H.D. Flows and Turbulence, Jerusalem, 1993, to appear.

  9. T. Dumont, To appear.

  10. J. B. Flor, Coherent vortex structures in stratified fluids. Thesis, Eindhoven (1994).

  11. D. gottlieb and S. A. Orszag,Numerical Analysis of Spectral Methods: Theory and Applications (SIAM, 1977).

  12. E. T. Jaynes, The minimum entropy production principles, InCollected Papers, R. D. Rosenkrantz, ed. (Kluwer, Dordrecht, 1989).

    Google Scholar 

  13. H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion,Commun. Math. Phys. 65:97–128 (1979).

    Google Scholar 

  14. R. H. Kraichnan, Diffusion by a random velocity field,Phys. Fluids 13:22–31 (1970).

    Google Scholar 

  15. R. Kubo, Stochastic Liouville equation,J. Math. Phys. 4:174–183 (1963).

    Google Scholar 

  16. J. Michel and R. Robert, Large deviations for Young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law,Commun. Math. Phys. 159:195–215 (1994).

    Google Scholar 

  17. J. Michel and R. Robert, Statistical mechanical theory of the great red spot of Jupiter,J. Stat. Phys. 77:645–666 (1994).

    Google Scholar 

  18. J. Miller, Statistical mechanics of Euler equations in two dimensions,Phys. Rev. Lett. 65:2137–2140 (1990).

    Google Scholar 

  19. J. Miller, P. B. Weichman, and M. C. Cross, Statistical mechanics, Euler equations, and Jupiter's red spot,Phys. Rev. A 45:2328–2359 (1992).

    Google Scholar 

  20. A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics, Vol. I (MIT Press, Cambridge, 1971).

    Google Scholar 

  21. D. Montgomery, W. H. Matthaeus, W. T. Stribling, D. Martinez, and S. Oughton, Relaxation in two dimensions and the “singh-Poisson” equation,Phys. Fluids A 4(1):3–6 (1992).

    Google Scholar 

  22. Y. G. Morel and X. J. Carton, Multipolar vortices in two-dimensional incompressible flows, Preprint, to appear.

  23. L. Onsager, Statistical hydrodynamics,Nuovo Cimento Suppl. 6:279 (1949).

    Google Scholar 

  24. R. Robert, Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics, inProceedings XIth International Congress of Mathematical Physics (Paris, 1994).

  25. R. Robert, A maximum entropy principle for two-dimensional Euler equations,J. Stat. Phys. 65:531–553 (1991).

    Google Scholar 

  26. R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows,J. Fluid Mech. 229:291–310 (1991).

    Google Scholar 

  27. R. Robert and J. Sommeria, Relaxation towards a statistical equilibrium state in twodimensional perfect fluid dynamics,Phys. Rev. Lett. A 69:2276–2279 (1992).

    Google Scholar 

  28. R. Sadourny, Turbulent diffusion in large scale flows, inLarge-Scale Transport Processes in Oceans and Atmosphere, J. Willebrand and D.L.T. Anderson, eds. (Reidel, Dordrecht, 1986).

    Google Scholar 

  29. J. Sommeria, C. Staquet and R. Robert, Final equilibrium state of a two-dimensional shear layer,J. Fluid Mech. 233:661–689 (1991).

    Google Scholar 

  30. P. Tabeling et al., Experimental study of decaying turbulence,Phys. Rev. Lett. 67: 3772–3775 (1991).

    Google Scholar 

  31. A. Thess, J. Sommeria, and B. Jüttner, Inertial organization of a two-dimensional turbulent vortex street,Phys. Fluids 6(7):2417–2429 (1994).

    Google Scholar 

  32. G. J. F. Van Heijst, R. C. Kloosterziel, and C. W. M. Williams, Laboratory experiments on the tripolar vortex in a rotating fluid,J. Fluid Mech. 225:301–331 (1991).

    Google Scholar 

  33. V. I. Youdovitch, Non-stationary flow of an incompressible liquid,Zh. Vych. Mat. 3:1032–1066 (1963).

    Google Scholar 

  34. M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer, Berlin, 1984).

    Google Scholar 

  35. P. Constantin and J. Wu, The inviscid limit for non-smooth vorticity, Preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, R., Rosier, C. The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach. J Stat Phys 86, 481–515 (1997). https://doi.org/10.1007/BF02199111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02199111

Key Words

Navigation