Skip to main content
Log in

Eigenvalues of the one-dimensional Smoluchowski equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The eigenvalues and eigenfunctions of the Smoluchowski equation are investigated for the case of potentials withN deep wells. The small parameter δ=kT/V, which measures the ratio of the thermal energy to a typical well depth, is used in connection with the method of matched asymptotic expansion to obtained asymptotic approximations to all the eigenvalues and eigenfunctions. It is found that the eigensolutions fall into two classes, namely (i) the top-of-the-well and (ii) the bottom-of-the-well eigensolutions. The eigenvalues for both classes of solutions are integer multiples of the squqres of the frequencies at the top or bottom of the various wells. The eigenfunctions are, in general, localized to the top or bottom of the corresponding well. The very small eigenvalues require special consideration because the asymptotic analysis is incapable of distinguishing them from the zero eigenvalue with multiplicityN. Another approximation reveals that, in addition to the true zero eigenvalue, there areN-1 eigenvalues of order exp(−δ). The case of other possible multiple eigenvalues is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Risken,The Fokker-Planck Equation (Springer-Verlag, New York, 1985).

    Google Scholar 

  2. C. W. Gardiner,Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, (Springer, New York, 1983).

    Google Scholar 

  3. P. Hänggi and H. Thomas, Stochastic processes: Time evolution, symmetries and linear response,Phys. Rep. 88:207 (1982).

    Article  Google Scholar 

  4. V. Barcilon, D.-P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: Part II,SIAM J. Appl. Math. 52:1405 (1992).

    Article  Google Scholar 

  5. M. M. Klosek, A. Nitzan, M. A. Ratner, and Z. Schuss,Anisotropic Barrier Crossing, preprint.

  6. P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers,Rev. Mod. Phys. 62:251 (1990).

    Article  Google Scholar 

  7. V. I. Mel'nikov and S. J. Meshkov,J. Chem. Phys. 85:1018 (1986).

    Article  Google Scholar 

  8. R. Ferrando, R. Spadacini, and G. E. Tommei, Exact solution of the Kramers problem in periodic potentials,Phys. Rev. A 46:R699 (1992); Kramers problem in periodic potentials: Jump rate and lengths.Phys. Rev. E 48:2437 (1993).

    Article  Google Scholar 

  9. E. C. Tichmarsh,Eigenfunction Expansions, Part I (Oxford University Press, New York, 1962).

    Google Scholar 

  10. E. A. Coddington and N. Levinson,Theory of Ordinary Differential Equations (McGraw Hill, New York, 1955).

    Google Scholar 

  11. J. Kevorkian and J. D. Cole,Perturbation Methods in Applied Mathematics (Springer-Verlag, New York, 1981).

    Google Scholar 

  12. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  13. Z. Schuss,Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcilon, V. Eigenvalues of the one-dimensional Smoluchowski equation. J Stat Phys 82, 267–296 (1996). https://doi.org/10.1007/BF02189231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189231

Key Words

Navigation