Skip to main content
Log in

Symmetry breaking and finite-size effects in quantum many-body systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a quantum many-body system on a lattice which exhibits a spontaneous symmetry breaking in its infinite-volume ground states, but in which the corresponding order operator does not commute with the Hamiltonian. Typical examples are the Heisenberg antiferromagnet with a Néel order and the Hubbard model with a (superconducting) off-diagonal long-range order. In the corresponding finite system, the symmetry breaking is usually “obscured” by “quantum fluctuation” and one gets a symmetric ground state with a long-range order. In such a situation, Horsch and von der Linden proved that the finite system has a low-lying eigenstate whose excitation energy is not more than of orderN −1, whereN denotes the number of sites in the lattice. Here we study the situation where the broken symmetry is a continuous one. For a particular set of states (which are orthogonal to the ground state and with each other), we prove bounds for their energy expectation values. The bounds establish that there exist ever-increasing numbers of low-lying eigenstates whose excitation energies are bounded by a constant timesN −1. A crucial feature of the particular low-lying states we consider is that they can be regarded as finite-volume counterparts of the infinite-volume ground states. By forming linear combinations of these low-lying states and the (finite-volume) ground state and by taking infinite-volume limits, we construct infinite-volume ground states with explicit symmetry breaking. We conjecture that these infinite-volume ground states are ergodic, i.e., physically natural. Our general theorems not only shed light on the nature of symmetry breaking in quantum many-body systems, but also provide indispensable information for numerical approaches to these systems. We also discuss applications of our general results to a variety of interesting examples. The present paper is intended to be accessible to readers without background in mathematical approaches to quantum many-body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Affleck,J. Phys. Condens. Matter 1:3047 (1989).

    Google Scholar 

  2. I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki,Phys. Rev. Lett. 59:799 (1987);Commun. Math. Phys. 115:477 (1988).

    Google Scholar 

  3. I. Affleck and E. H. Lieb,Lett. Math. Phys. 12:57 (1986).

    Google Scholar 

  4. A. Aizenman, E. B. Davies, and E. H. Lieb,Adv. Math. 28:84 (1978).

    Google Scholar 

  5. A. Aizenman and E. H. Lieb,J. Stat. Phys. 24:279 (1981).

    Google Scholar 

  6. P. W. Anderson,Phys. Rev. 86:694 (1952).

    Google Scholar 

  7. P. Azaria, B. Delmotte, and D. Mouhanna,Phys. Rev. Lett. 70:16 (1993).

    Google Scholar 

  8. B. Bernu, C. Lhuillier, and L. Pierre,Phys. Rev. Lett. 69:2590 (1992).

    Google Scholar 

  9. O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics I, II (Springer, 1979).

  10. F. J. Dyson, E. H. Lieb, and B. Simon,J. Stat. Phys. 18:335 (1978).

    Google Scholar 

  11. F. H. L. Essller, V. E. Korepin, and K. Schoutens,Phys. Rev. Lett. 68:2960 (1992);70:73 (1993).

    Google Scholar 

  12. M. Fannes, B. Nachtergaele, and R. F. Werner,Europhys. Lett.,10:633 (1989);Commun. Math. Phys. 144:443 (1992).

    Google Scholar 

  13. M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, and J. P. Renard,Phys. Rev. Lett. 65:3183 (1990).

    Google Scholar 

  14. F. D. M. Haldane,Phys. Lett. 93A:464 (1983);Phys. Rev. Lett. 50:1153 (1983).

    Google Scholar 

  15. P. Horsch and W. von der Linden,Z. Phys. B 72:181 (1988).

    Google Scholar 

  16. E. Jordão Neves and J. Fernando Perez,Phys. Lett. 114A:331 (1986).

    Google Scholar 

  17. C. Kaiser and I. Peschel,J. Phys. A. 22:4257 (1989).

    Google Scholar 

  18. T. A. Kaplan, P. Horsch, and W. von der Linden,J. Phys. Soc. Jpn. 11:3894 (1989).

    Google Scholar 

  19. T. A. Kaplan, W. von der Linden, and P. Horsch,Phys. Rev. B 42:4663 (1990).

    Google Scholar 

  20. T. Kennedy,J. Phys. Condensed Matter 2:5737 (1990).

    Google Scholar 

  21. T. Kennedy, E. H. Lieb, and B. S. Shastry,J. Stat. Phys. 53:1019 (1988).

    Google Scholar 

  22. T. Kennedy, E. H. Lieb, and B. S. Shastry,Phys. Rev. Lett. 61:2582 (1988).

    Google Scholar 

  23. T. Kennedy and H. Tasaki,Phys. Rev. B 45:304 (1992);Commun. Math. Phys. 147:431 (1992).

    Google Scholar 

  24. M. Kikuchi, Y. Okabe, and S. Miyashita,J. Phys. Soc. Jpn. 59:492 (1990).

    Google Scholar 

  25. A. Klümper, A. Schadschneider, and J. Zittarz,J. Phys. A 24:L995 (1991).

    Google Scholar 

  26. T. Koma and H. Tasaki,Phys. Rev. Lett. 70:93 (1993);Commun. Math. Phys. 158:191 (1993).

    Google Scholar 

  27. K. Kubo,Phys. Rev. Lett. 61:110 (1988).

    Google Scholar 

  28. K. Kubo and T. Kishi,Phys. Rev. Lett. 61:2585 (1988).

    Google Scholar 

  29. P. W. Leung and K. J. Runge,Phys. Rev. B 47:5861 (1993).

    Google Scholar 

  30. E. H. Lieb,Phys. Rev. Lett. 62:1201 (1989).

    Google Scholar 

  31. E. H. Lieb, inProceedings “Advances in Dynamical Systems and Quantum Physics” Capri, May 1993 (World Scientific, to appear), and inProceedings of 1993 NATO ASW “The Physics and Mathematical Physics of the Hubbard Model” (Plenum, to appear).

  32. E. H. Lieb and D. C. Mattis,J. Math. Phys. 3:749 (1962).

    Google Scholar 

  33. W. Marshall,Proc. R. Soc. Lond. A 232:48 (1955).

    Google Scholar 

  34. T. Matsubara and H. Matsuda,Prog. Theor. Phys. 16:569 (1956).

    Google Scholar 

  35. T. Momoi,J. Stat. Phys. 75:707 (1994).

    Google Scholar 

  36. T. Momoi, Preprint.

  37. A. Montorsi, ed.,Hubbard Model—A Reprint Volume (World Scientific, 1992).

  38. M. den Nijs and K. Rommelse,Phys. Rev. B 40:4709 (1989).

    Google Scholar 

  39. H. Nishimori, K. Kubo, Y. Ozeki, Y. Tomita, and T. Kishi,J. Stat. Phys. 55:259 (1989).

    Google Scholar 

  40. H. Nishimori and Y. Ozeki,J. Phys. Soc. Jpn. 58:1027 (1989).

    Google Scholar 

  41. Y. Ozeki, H. Nishimori, and Y. Tomita,J. Phys. Soc. Jpn. 58:82 (1989).

    Google Scholar 

  42. M. Reed and B. Simon,Method of Modern Mathematical Physics I: Functional Analysis (Academic Press, 1972).

  43. D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, 1969).

  44. S.-Q. Shen and Z.-M. Qiu,Phys. Rev. Lett. 71:4238 (1993).

    Google Scholar 

  45. B. Simon,Statistical Mechanics of Lattice Gases I (Princeton University Press, 1993).

  46. H. Tasaki,Phys. Rev. Lett. 66:798 (1991).

    Google Scholar 

  47. L. Van Hove,Physica 15:951 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koma, T., Tasaki, H. Symmetry breaking and finite-size effects in quantum many-body systems. J Stat Phys 76, 745–803 (1994). https://doi.org/10.1007/BF02188685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188685

Key Words

Navigation