Skip to main content
Log in

On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction coefficient

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Fokker-Planck equation governing the evolution of the distribution function of a massive Brownian hard sphere suspended in a fluid of much lighter spheres is derived from the exact hierarchy of kinetic equations for the total system via a multiple-time-scale analysis akin to a uniform expansion in powers of the square root of the mass ratio. The derivation leads to an exact expression for the friction coefficient which naturally splits into an Enskog contribution and a dynamical correction. The latter, which accounts for correlated collisions events, reduces to the integral of a time-displaced correlation function of dynamical variables linked to the collisional transfer of momentum between the infinitively heavy (i.e., immobile) Brownian sphere and the fluid particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. J. Beenakker and P. Mazur,Physica A 131:311 (1985), and references therein.

    Google Scholar 

  2. P. N. Pusey, inLiquids, Freezing and the Glass Transition, J. P. Hansen, D. Levesque, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1991).

    Google Scholar 

  3. P. Résibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  4. W. Hess and R. Klein,Adv. Phys. 32:173 (1983).

    Google Scholar 

  5. J. L. Lebowitz and E. Rubin,Phys. Rev. 131:2381 (1963); P. Résibois and H. T. Davis,Physica 30:1077 (1964); J. L. Lebowitz and P. Résibois,Phys. Rev. 139:1101 (1965).

    Article  Google Scholar 

  6. R. I. Cukier and J. M. Deutch,Phys. Rev. 177:240 (1969).

    Article  Google Scholar 

  7. J. Mercer and T. Keyes,J. Stat. Phys. 32:35 (1983).

    Article  Google Scholar 

  8. J. M. Deutch and I. Oppenheim,J. Chem. Phys. 54:3541 (1971); T. J. Murphy and J. L. Aguirre,J. Chem. Phys. 57:2098 (1972).

    Article  Google Scholar 

  9. J. R. Dorfman, H. Van Beijeren, and C. F. McClure,Archiw. Mech. Stos. 28:333 (1976);J. Stat. Phys. 23:35 (1980).

    Google Scholar 

  10. A. Masters and T. Keyes,J. Stat. Phys. 33:149 (1983).

    Article  Google Scholar 

  11. M. H. Ernst and J. R. Dorfman,Physica 61:157 (1972).

    Article  Google Scholar 

  12. A. J. Masters and P. A. Madden,J. Chem. Phys. 74:2450;75:127 (1981); J. Schofield and I. Oppenheim,Physica A 187:210 (1992).

    Article  Google Scholar 

  13. W. Sung and G. Stell,J. Chem. Phys. 77:4636 (1982).

    Article  Google Scholar 

  14. M. H. Ernst, J. R. Dorfman, W. Hoegg, and J. M. J. van Leeuwen,Physica 45:127 (1965).

    Article  Google Scholar 

  15. H. Reiss, H. L. Frisch and J. L. Lebowitz,J. Chem. Phys. 31:369 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocquet, L., Piasecki, J. & Hansen, JP. On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction coefficient. J Stat Phys 76, 505–526 (1994). https://doi.org/10.1007/BF02188673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188673

Key Words

Navigation