Skip to main content
Log in

Real space renormalization group theory of the percolation model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A cluster expansion renormalization group method in real space is-developed to determine the critical properties of the percolation model. In contrast to previous renormalization group approaches, this method considers the cluster size distribution (free energy) rather than the site or bond probability distribution (coupling constants) and satisfies the basic renormalization group requirement of free energy conservation. In the construction of the renormalization group transformation, new couplings are generated which alter the topological structure of the clusters and which must be introduced in the original system. Predicted values of the critical exponents appear to converge to presumed exact values as higher orders in the expansion are considered. The method can in principle be extended to different lattice structures, as well as to different dimensions of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Nobel Lecture,Rev. Mod. Phys. 50:191 (1978); N. F. Mott, Nobel Lecture,Rev. Mod. Phys. 50:203 (1978); I. A. Akhiezer and D. P. Belozorov,Phys. Rep. 204:253 (1991).

    Article  Google Scholar 

  2. J. Fröhlich, inCritical Phenomena, Random Systems, Gauge Theories, K. Osterwalder and R. Stora, eds. (Elsevier, 1986), pp. 725–894; K. Binder and A. P. Young,Rev. Mod. Phys. 58:801 (1986); S. Kirkpatrick, inIll-Condensed Matter, R. Balian, eds. (North-Holland, 1979).

  3. S. R. Broadbent and J. M. Hammersley,Proc. Camb. Philos. Soc. 53:629 (1956).

    Google Scholar 

  4. K. G. Wilson, Nobel Lecture,Rev. Mod. Phys. 55:583 (1983);Sci. Am. 241:140 (1979).

    Article  Google Scholar 

  5. D. Stauffer,Phys. Rep. 54:1 (1979).

    Article  Google Scholar 

  6. P. W. Kastelyn and C. M. Fortuin,J. Phys. Soc. Japan Suppl. 26:11(1969).

    Google Scholar 

  7. M. E. Fisher and J. W. Essam,J. Math. Phys. 2:609 (1961).

    Article  Google Scholar 

  8. B. Payandeh,Nuovo Cimento 3:1 (1980).

    Google Scholar 

  9. A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta,Phys. Rev. Lett. 35:327 (1975); O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKane,J. Phys. A 13:L247 (1980);14:2391 (1981); and references therein.

    Article  Google Scholar 

  10. C. Dasgupta,Phys. Rev. B 14:1221 (1976); T. W. Burkhardt and B. W. Southern,J. Phys. A 11:L253 (1978).

    Article  Google Scholar 

  11. A. P. Young and R. B. Stinchcombe,J. Phys. C 8:L535 (1975).

    Google Scholar 

  12. S. Kirkpatrick,Phys. Rev. B 15:1533 (1976).

    Article  Google Scholar 

  13. P. J. Reynolds, W. Klein, and H. E. Stanley,J. Phys. C 10:L167, (1977).

    Google Scholar 

  14. P. J. Reynolds, H. E. Stanley, and W. Klein,Phys. Rev. B 21:1223 (1980); Y. Yuge and C. Murase,J. Phys. A 11:L83 (1978).

    Article  Google Scholar 

  15. G. Ord, B. Payandeh, and M. Robert,Phys. Rev. B. 37:467 (1988).

    Article  Google Scholar 

  16. M. Knackstedt, J. McCrary, B. Payandeh, and M. Robert,J. Phys. A 21:4067 (1988).

    Google Scholar 

  17. C. Tsallis and G. Schwachheim,J. Phys. C 12:9 (1979).

    Google Scholar 

  18. H. Nakanishi and P. J. Reynolds,Phys. Lett. 71A:252 (1979).

    Google Scholar 

  19. B. Shapiro,J. Phys. C 12:3185 (1979).

    Google Scholar 

  20. M. E. Fisher, inCritical Phenomena, F. J. W. Hahne, eds. (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  21. T. Niemeijer and J. M. J. van Leeuwen,Phys. Rev. Lett. 31:1411 (1973).

    Article  Google Scholar 

  22. T. Niemeijer and J. M. J. van Leeuwen,Physica 71:17 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Philippe Choquard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payandeh, B., Robert, M. Real space renormalization group theory of the percolation model. J Stat Phys 76, 477–495 (1994). https://doi.org/10.1007/BF02188671

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188671

Key Words

Navigation