Skip to main content
Log in

Brownian dynamics simulations of colloidal hard spheres. Effects of sample dimensionality on self-diffusion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The self-diffusion coefficients of colloidal hard spheres were determined by Brownian dynamics (BD) computer simulations using a new efficient algorithm for treatment of the hard-sphere interactions. Calculations were done on an Apple PC type MacIIcx and on a Micro VAX 3000, considering samples in two and three dimensions at varying particle concentrations. Our results in three dimensions are compared with experimental results from our own group which were obtained by forced Rayleigh scattering (FRS), and with numerical results from a dynamical Monte Carlo simulation by Cichocki and Hinsen. Good agreement with the latter was found for particle volume fractions up to 0.40. Differences in the dynamical behavior of our numerically treated 2D and 3D samples are discussed using a simple geometrical model to enable comparison of particle concentrations in samples with different dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. Pusey, inLiquids, Freezing and the Glass Transition, D. Levesque, J. P. Hansen, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991).

    Google Scholar 

  2. W. van Megen, R. H. Ottewill, S. M. Owens, and P. N. Pusey,J. Chem. Phys. 91:552 (1989).

    Article  Google Scholar 

  3. A. van Veluwen, H. N. W. Lekkerkerker, C. G. de Kruif, and A. Frij,J. Chem. Phys. 89:2810 (1988).

    Article  Google Scholar 

  4. C. W. J. Beenakker and P. Mazur,Physica 126A:349 (1984).

    Google Scholar 

  5. M. Medina-Noyola,Phys. Rev. Lett. 60:2705 (1988).

    Article  Google Scholar 

  6. H. Yoshida, K. Ito, and N. Ise,J. Am. Chem. Soc. 112:592 (1990).

    Article  Google Scholar 

  7. J. T. G. Overbeek,J. Chem. Phys. 87:4406 (1987).

    Article  Google Scholar 

  8. C. A. Murray, D. H. van Winkle, and R. A. Wenk,J. Phys. Cond. Matter 2:SA385 (1990).

    Article  Google Scholar 

  9. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  10. R. Pecora,Dynamic Light Scattering (Plenum Press, New York, 1985).

    Google Scholar 

  11. W. Schaertl, Ph.D. thesis, Mainz (1992).

  12. W. Schaertl and H. Sillescu,J. Colloid Interface Sci. 155:313 (1993).

    Article  Google Scholar 

  13. E. B. Bradford and J. W. Vanderhoff,J. Appl. Phys. 26:864 (1955).

    Article  Google Scholar 

  14. J. W. Vanderhoff,Prepr. Am. Chem. Soc. Div. Org. Coat. Plast. 24:223 (1964).

    Google Scholar 

  15. M. Antonietti, W. Bremser, D. Müschenborn, Ch. Rosenauer, B. Schupp, and M. Schmidt,Macromolecules 24:6636 (1991).

    Article  Google Scholar 

  16. E. Bartsch, M. Antonietti, W. Schupp, and H. Sillescu,J. Chem. Phys. 97:3950 (1992).

    Article  Google Scholar 

  17. E. Bartsch, S. Möller, F. Renth, and H. Sillescu,Physica A, in press.

  18. B. Cichocki and K. Hinsen,Physica A 166:473 (1990).

    Google Scholar 

  19. H. Löwen, J. P. Hansen, and J. N. Roux,Phys. Rev. A 44:1169 (1991).

    Article  Google Scholar 

  20. N. Pistoor and K. Kremer,Prog. Colloid Polym. Sci. 81:184 (1990).

    Google Scholar 

  21. M. O. Robbins, K. Kremer, and G. S. Grest,J. Chem. Phys. 88:3286 (1988).

    Article  Google Scholar 

  22. N. Pistoor, Ph.D. thesis, Mainz (1992).

  23. H. Gould and J. Tobochnik,An Introduction to Computer Simulation Methods, Part 1 (Addison-Wesley, Reading, Massachusetts, 1988).

    Google Scholar 

  24. D. L. Ermak and J. A. McCammon,J. Chem. Phys. 69:1352 (1978).

    Article  Google Scholar 

  25. E. G. D. Cohen and I. M. de Schepper,J. Stat. Phys. 63:241 (1991).

    Article  Google Scholar 

  26. H. Löwen and G. Szamel,J. Phys. Cond. Mat. 5:2295 (1993).

    Article  Google Scholar 

  27. B. J. Ackerson and L. Fleishman,J. Chem. Phys. 76:2675 (1982).

    Article  Google Scholar 

  28. H. N. W. Lekkerkerker and J. K. G. Dhont,J. Chem. Phys. 80:5790 (1984).

    Article  Google Scholar 

  29. J. A. Leegwater and G. Szamel,Phys. Rev. A 46:4999 (1992).

    Article  Google Scholar 

  30. G. Szamel and J. A. Leegwater,Phys. Rev. A 46:5012 (1992).

    Article  Google Scholar 

  31. B. Cichocki,Physica A 148:165 (1988).

    Google Scholar 

  32. C. A. Murray, W. O. Sprenger, and R. A. Wenk,Phys. Rev. 42B:1169 (1991).

    Google Scholar 

  33. W. van Megen and S. M. Underwood,J. Chem. Phys. 91:552 (1989).

    Article  Google Scholar 

  34. B. Cichocki and K. Hinsen,Physica A 187:133 (1992).

    Google Scholar 

  35. L. V. Woodcock,Ann. N. Y. Acad. Sci. 37:274 (1981).

    Google Scholar 

  36. B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson,J. Stat. Phys. 64:501 (1991).

    Article  Google Scholar 

  37. A. van Blaaderen and A. Vrij,Langmuir 8:2921 (1992).

    Article  Google Scholar 

  38. V. Frenz, A. Kasper, W. Schaertl, and H. Sillescu, work in progress.

  39. C. A. Murray, W. O. Sprenger, and R. A. Wenk,Phys. Rev. B 42:1169 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaertl, W., Sillescu, H. Brownian dynamics simulations of colloidal hard spheres. Effects of sample dimensionality on self-diffusion. J Stat Phys 74, 687–703 (1994). https://doi.org/10.1007/BF02188576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188576

Key Words

Navigation