Skip to main content
Log in

A dimension formula for Bernoulli convolutions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a “dynamical” approach to the study of the singularity of infinitely convolved Bernoulli measuresv β, for β the golden section. We introducev β as the transverse measure of the maximum entropy measure μ on the repelling set invariant for contracting maps of the square, the “fat baker's” transformation. Our approach strongly relies on the Markov structure of the underlying dynamical system. Indeed, if β=golden mean, the fat baker's transformation has a very simple Markov coding. The “ambiguity” (of order two) of this coding, which appears when projecting on the line, due to passages for the central, overlapping zone, can be expressed by means of products of matrices (of order two). This product has a Markov distribution inherited by the Markov structure of the map. The dimension of the projected measure is therefore associated to the growth of this product; our dimension formula appears in a natural way as a version of the Furstenberg-Guivarch formula. Our technique provides an explicit dimension formula and, most important, provides a formalism well suited for the multifractal analysis of this measure, as we will show in a forthcoming paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alexander and J. Yorke, The fat baker's transformation,Ergod. Theory Dynam. Syst. 4:1–23 (1984).

    Google Scholar 

  2. J. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, preprint, University of Maryland (1991).

  3. T. Bedford, The box dimension of self-affine graphs and repellers,Nonlinearity 2:53–71 (1989).

    Google Scholar 

  4. T. Bedford and M. Urbanski, The box and Hausdorff dimension of self-affine sets,Ergod. Theory Dynam. Syst. 10:627–644 (1990).

    Google Scholar 

  5. F. Blanchard, Développement des nombres réels en base non entière,Rev. Mat. Apl. 9:9–19 (1988).

    Google Scholar 

  6. Ph. Bougerol, Théorèmes limites pour les systèmes linéaires à coefficients markoviens,Prob. Theory Related Fields 78 (1988).

  7. Ph. Bougerol and J. Lacroix, Products of random matrices with applications to Schrödinger operators, inProgress in Probability and Statistics, Vol. 8 (Birkhäuser, Basel, 1985).

    Google Scholar 

  8. A. Bovier, Bernoulli convolutions as an invariant measure problem, preprint, University of Bonn (1991).

  9. Bourbaki,Intégration (Hermann, Paris, 1967), Chapter V.

    Google Scholar 

  10. E. Cogen, H. Kesten, and C. Newman, Random matrices and their applications,Contemp. Math. 50 (1984).

  11. P. Collet, J. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47(5/6) (1987).

  12. J. Doob,Stochastic Process (Wiley, New York, 1953).

    Google Scholar 

  13. L. Dubins and D. Freedman, Invariant probabilities for certain Markov processes,Ann. Math. Stat. 37:837–848 (1966).

    Google Scholar 

  14. P. Erdös, On the smoothness properties of a family of Bernoulli convolutions,Am. J. Math. 62:180–186 (1940).

    Google Scholar 

  15. P. Erdös, On a family of symmetric Bernoulli convolutions,Am. J. Math. 61:974–976 (1939).

    Google Scholar 

  16. J. Farmer, Information dimension and the probabilistic structure of chaos,Z. Naturforsch. 37a:1304–1325 (1982).

    Google Scholar 

  17. J. Farmer, E. Ott, and J. Yorke, The dimension of chaotic attractors, in Proceedings Low Alamos Conference “Order in Chaos,”Phys. D (1982).

  18. P. Frederickson, J. Kaplan, E. Yorke, and J. Yorke, The Lyapunov dimension of strange attractors,J. Diff. Equat. 49:185–207 (1983).

    Google Scholar 

  19. H. Furstenberg, Non-commuting random products,Trans. Am. Math. Soc. 108:377–428 (1963).

    Google Scholar 

  20. A. Garsia, Arithmetic properties of Bernoulli convolutions,Trans. Am. Math. Soc. 162: 409–432 (1962).

    Google Scholar 

  21. A. Garsia, Entropy and singularity of infinite convolutions,Prac. J. Math. 13:1159–1169 (1963).

    Google Scholar 

  22. Y. Guivarc'h, Quelques propriétés asymptotiques des produits de matrices aléatoires, inLecture Notes in Mathematics, Vol. 774 (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  23. Y. Guivarc'h, Exposants caractéristiques des produits de matrices aléatoires en dépendence markovienne, inProbability Measures on Groups (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  24. B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function,Trans. Am. Math. Soc. 38:48–88 (1935).

    Google Scholar 

  25. F. Ledrappier, Quelques propriétés des exposants caractéristiques, inLecture Notes in Mathematics, Vol. 1097 (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  26. F. Ledrappier, Some relations between dimension and Lyapunov exposants,Commun. Math. Phys. 81:229–238 (1981).

    Google Scholar 

  27. F. Ledrappier and L. S. Young, The metric entropy of diffeomorphisms,Ann. Math. 122:540–574 (1985).

    Google Scholar 

  28. F. Ledrappier and L. S. Young, Dimension formula for random transformations,Commun. Math. Phys. 117:529–548 (1988).

    Google Scholar 

  29. C. McMullen, The Hausdorff dimension of general Sierpinski carpets,Nagoya Math. J. 96:1–9 (1984).

    Google Scholar 

  30. V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,Trudy Moskov. Mat. Obsch. 19:179–210 (1968).

    Google Scholar 

  31. W. Parry, On the β-expansions of real numbers,Acta Math. Acad. Sci. Hung. 11:401–416 (1960).

    Google Scholar 

  32. F. Przytycki and M. Urbanski, On the Hausdorff dimension of some fractal sets,Studia Math. 93:155–186 (1989).

    Google Scholar 

  33. D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978).

    Google Scholar 

  34. R. Salem, A remarkable class of algebraic integers,Duke Math. J. 11:103–108 (1984).

    Google Scholar 

  35. M. Urbanski, The probability distribution and the Hausdorff dimension of self-affine functions,Prob. Theory Related Fields 84:377–391 (1990).

    Google Scholar 

  36. L. S. Young, Dimension, entropy, and Lyapunov exponents,Ergod. Theory Dynam. Syst. 2:109–124 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledrappier, F., Porzio, A. A dimension formula for Bernoulli convolutions. J Stat Phys 76, 1307–1327 (1994). https://doi.org/10.1007/BF02187064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187064

Key Words

Navigation