Skip to main content
Log in

A Monte Carlo study of size and angular properties of a three-dimensional Poisson-Delaunay cell

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

On the basis of simulation of 1.2×106 three-dimensional Poisson-Delaunay cells, the statistical properties of their size and angular parameters have been studied. The moments of the volume, face area, and edge length distributions are found to be equal to those obtained from the exact expressions of Miles and of Moller. The volume, surface area, and face area distributions can be described by the two-parameter gamma distribution. The normal distribution can be used to describe the distributions of the total edge length of a cell and the perimeter of a face. The edge length distribution has also been studied. The distribution of the angle in a face is found to be in accordance with its theoretical distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Miles, The random division of space, Adv. Appl. Probl.Suppl. 1972:243–266.

  2. R. E. Miles, A synopsis of ‘Poisson flats in Euclidean spaces’, inStochastic Geometry, E. F. Harding and D. G. Kendall, eds. (Wiley, New York, 1974).

    Google Scholar 

  3. J. Moller, Random tessellations inR d,Adv. Appl. Prob. 21:37–73 (1989).

    Google Scholar 

  4. R. E. Miles, Australian National University, Australia, Private communication (1992).

  5. G. Voronoi,J. Reine Angew. Math. 134:198–287 (1908).

    Google Scholar 

  6. R. A. Fischer and R. E. Miles, The role of spatial competition between crop plants and weeds. A theoretical analysis,Math. Biosci. 18:335–350 (1973).

    Article  Google Scholar 

  7. H. Honda, Geometrical models for cells in tissues,Int. Rev. Cytol 81:191–248 (1983).

    Google Scholar 

  8. A. Rahman, Liquid structure and self-diffusion,J. Chem. Phys.,45:2585–2592 (1966).

    Article  Google Scholar 

  9. F. M. Richards, Area, volumes, packing, and protein structure,Annu. Rev. Biophys. Bioeng. 6:151–76 (1977).

    Article  PubMed  Google Scholar 

  10. J. L. Finney, Volume occupation, environment and accessibility in proteins: The problem of the protein surface,J. Mol. Biol. 96:721–732 (1975).

    Article  Google Scholar 

  11. P. H. Winterfeld, Ph.d. Thesis, University of Minnesota (1981).

  12. E. W. Kaler and S. Prager, A model of dynamic scattering by microemulsion,J. Colloid Interface Sci. 86:359–369 (1982).

    Article  Google Scholar 

  13. S. Kumar, Ph. d. Thesis, Pennsylvania State University (1992).

  14. M. Kobayashi, H. Maekawa, and Y. Kondous, Calculation of the mean thermal conductivity of a heterogeneous solid mixture with the Voronoi-polyhedron element method,Heat Transfer: Jpn. Res. 21:219–236 (1992).

    Google Scholar 

  15. S. Kumar and S. K. Kurtz, Simulation of material microstructure using a 3D Voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials, to be published.

  16. P. Pathak, Ph. d. Thesis, University of Minnesota (1981).

  17. T. Kiang, Random fragmentation in two and three dimensions,Z. Astrophys. 64:433–439 (1966).

    Google Scholar 

  18. V. Icke and R. Vande Weygaert, Fragmenting the universe I: Statistics of two-dimensional Voronoi foam,Astron. Astrophys. 184:16–32 (1987).

    Google Scholar 

  19. R. Vande Weygaert and V. Icke, Fragmenting the universe II: Voronoi vertices as Abell clusters,Astron. Astrophys. 213:1–9 (1989).

    Google Scholar 

  20. S. Yoshioka and S. Ikeuchi, The large scale structures of the universe and the division of space,Astrophys. J. 341:16–25 (1989).

    Article  Google Scholar 

  21. V. J. Martinez, B. J. T. Jones, R. D. Tenreiro, and R. Weygaert, Clustering paradigms and multifractal measures,Astrophys. J. 357:50–61 (1990).

    Article  Google Scholar 

  22. M. Pierre, Probes for the large scale structures,Astron. Astrophys. 229:7–16 (1990).

    Google Scholar 

  23. L. Zaninetti, The Voronoi tessellation generated from different distributions of seeds,Phys. Lett. A 165:143–147 (1992).

    Article  Google Scholar 

  24. J. L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates with random nucleation,Philips Res. Rep. 8:270–290 (1953).

    Google Scholar 

  25. E. N. Gilbert, Random subdivisions of space into crystals,Ann. Math. Sttat. 33:958–972 (1962).

    Google Scholar 

  26. A. L. Mackay, Stereological characteristics of atomic arrangements in crystals,J. Microsc. 95(2):217–227 (1972).

    Google Scholar 

  27. P. J. Wray, O. Richmond, and H. L. Morrison, Use of Dirichlet tessellation for characterizing and modelling nonregular dispersions of second phase particles,Metallography 16:39–58 (1983).

    Article  Google Scholar 

  28. H. J. Frost and C. V. Thompson, The Effect of nucleation condition on the topology and geometry of two-dimensional grain structures,Acta Met. 35:529–540 (1987).

    Article  Google Scholar 

  29. M. Hasegawa and M. Tanemura, On the pattern of space division by territories,Ann. Inst. Stat. Math. 28 (Part B):509–519 (1976).

    Google Scholar 

  30. M. Hasegawa and M. Tanemura, inRecent Developments in Statistical Inference and Data Analysis, K. Matusita, ed. (North-Holland, Amsterdam, 1980), pp. 73–78.

    Google Scholar 

  31. M. Tanemura and M. Hasegawa, Geometrical models of territory I. Models of synchronous and asynchronous settlement of territories,J. Theor. Biol. 82:477–496 (1980).

    Article  Google Scholar 

  32. D. Stoyan, W. S. Kendall, and J. Mecke,Stochastic Geometry and Its Application (Wiley, New York, 1987).

    Google Scholar 

  33. A. Okabe, B. Boots, and K. Sugihara,Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, (Wiley, New York, 1992).

    Google Scholar 

  34. N. N. Medvedev, Aggregation of tetrahedral and quartoctahedral Delaunay simplices in liquid and amorphous rubidium,J. Phys. Condensed Matter 2:9145–9154 (1990).

    Article  Google Scholar 

  35. N. N. Medvedev and Y. I. Naberukhin, Study of the structure of simple liquids and amorphous soilds by statistical geometry methods,J. Struct. Chem. 28(3):433–446 (1987).

    Article  Google Scholar 

  36. N. N. Medvedev and Y. I. Naberukhin, Shape of the Delaunay simplices in dense random packings of hard and soft spheres,J. Non-Cryst. Solids 94:402–406 (1987).

    Article  Google Scholar 

  37. N. N. Medvedev, V. P. Voloshin, and Y. I. Naberukhin, Structures of simple liquids as a percolation problem on the Voronoi network,J. Phys. A: Math. Gen. 21:L247-L252 (1988).

    Article  Google Scholar 

  38. N. N. Medvedev, V. P. Voloshin, and Y. I. Naberukhin, Structures of simple liquids as a problem of percolation in the Voronoi grid,J. Struct. Chem. 30:253–260 (1989).

    Article  Google Scholar 

  39. Y. Hitwari, T. Saito, and A. Ueda, Structural characterization of soft-core and hard-core glasses by Delaunay tesselation,J. Chem. Phys. 81:6044–6050 (1984).

    Article  Google Scholar 

  40. J. R. Rustad, D. A. Yuen, and F. J. Spera, The statistical geometry of amorphous silica at lower mantle pressures: Implications for melting slopes of silicates and anharmonicity,J. Geophys. Res. 96:19665–19673 (1991).

    Google Scholar 

  41. M. Ostoja-Starzewski, Bounds on constitutive response for a class of random material microstructures,Computers Structures,37:163–167 (1990).

    Article  Google Scholar 

  42. M. Ostoja-Starzewski, and C. Wang, Linear elasticity of planar Delaunay networks: Random field characterization of effective moduli,Acta Mech. 80:61–80 (1989).

    Article  Google Scholar 

  43. M. Ostoja-Starzewski and C. Wang, Linear elasticity of planar Delaunay networks. Part II: Voigt and Reuss bounds, and modification for centroids,Acta Mech. 84:47–61 (1990).

    Article  Google Scholar 

  44. N. H. Christ, R. Friedberg, and T. D. Lee, Random lattice field theory: General formulation,Nucl. Phys. B 202:89–125 (1982).

    Article  Google Scholar 

  45. N. H. Christ, R. Friedberg, and T. D. Lee, Gauge theory on a random lattice,Nucl. Phys. B 210:310–336 (1982).

    Article  Google Scholar 

  46. N. H. Christ, R. Friedberg, and T. D. Lee, Weights of links and plaquettes in a random lattice,Nucl. Phys. B 210:337–346 (1982).

    Article  Google Scholar 

  47. P. N. Rathie, On the volume distribution of the typical Poisson-Delaunay cell,J. Appl. Prob. 29:740–744 (1992).

    Google Scholar 

  48. H. G. Hanson, Voronoi cell properties from simulated and real random spheres and points,J. Stat. Phys. 30:591–605 (1983).

    Article  Google Scholar 

  49. B. N. Boots and D. J. Murdoch, The spatial arrangement of random Voronoi polygons,Computers Geosci. 9:351–365 (1983).

    Article  Google Scholar 

  50. J. M. Drouffe and C. Itzykson, Random geometry and the statistics of two-dimensional cells,Nucl. Phys. B 235:45–53 (1984).

    Article  Google Scholar 

  51. M. P. Quine and D. F. Watson, Radial generation ofn-dimensional Poisson processes,J. Appl. Prob. 21:548–557 (1984).

    Google Scholar 

  52. D. Weaire and J. P. Kermode, Computer simulation of a two-dimensional soap froth II. Analysis of results,Phil. Mag. B 50:379–395 (1984).

    Google Scholar 

  53. D. Weaire, J. P. Kermode, and J. Wejchert, On the distribution of cell areas in a Voronoi network,Phil. Mag. B 53:L101–105 (1986).

    Google Scholar 

  54. B. N. Boots, The arrangement of cells in “random” networks,Metallography 15:53–62 (1982).

    Article  Google Scholar 

  55. B. N. Boots, Edge length properties of random Voronoi polygons,Metallography 20:231–236 (1987).

    Article  Google Scholar 

  56. P. N. Andrade and M. A. Fortes, Distribution of cell volumes in a Voronoi partition,Phil. Mag. B 58:671–674 (1988).

    Google Scholar 

  57. H. Hermann, H. Wendrock, and D. Stoyan, Cell-area distributions of planar Voronoi mosaics,Metallography 23:189–200 (1989).

    Article  Google Scholar 

  58. G. L. Le Caer and J. S. Ho, The Voronoi tessellation generated from eigenvalues of complex random matrices,J. Phys. A: Math. Gen. 23:3279–3295 (1990).

    Article  Google Scholar 

  59. U. Lorz, Cell-area distributions of planar sections of spatial Voronoi mosaics,Materials Characterization 25:297–309 (1990).

    Article  Google Scholar 

  60. U. Lorz, Distributions of cell characteristics of the spatial Poisson-Voronoi tessellation and plane sections, inGeometerical Problems of Image Processings, Vol. 4, U. Eckhardt, A. Hubler, W. Nagel, and G. Werner, eds. (Akademic Verlag, 1991), pp. 171–178.

  61. A. Thorvaldsen, Simulation of 3-D Voronoi polygons,Materials Sci. Forum 94–96:307 (1992).

    Google Scholar 

  62. S. Kumar and S. K. Kurtz, Properties of a two-dimensional Poisson-Voronoi tesselation: A Monte Carlo study,Materials Characterization 31:55–68 (1993).

    Article  Google Scholar 

  63. S. Kumar, S. K. Kurtz, and D. Weaire, Average number of sides for the neighbors in a Poisson-Voronoi tesselation,Phil. Mag. B. 69:431–435 (1994).

    Google Scholar 

  64. I. K. Crain, The Monte-Carlo generation of random polygons,Computers Geosci. 4:131–141 (1978).

    Article  Google Scholar 

  65. A. L. Hinde and R. E. Miles, Monte-Carlo estimates of the distributions of the random polygons of the Voronoi tesselation with respect to a Poisson process,J. Stat. Computation Simulation 10:205–223 (1980).

    Google Scholar 

  66. K. W. Mahin, K. Hanson, and J. W. Morris, Jr., Comparative analysis of the cellular and Johnson-Mehl microstructures through computer simulation,Acta Met. 28:443–453 (1980).

    Article  Google Scholar 

  67. S. Kumar, S. K. Kurtz, J. R. Banavar, and M. G. Sharma, Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte-Carlo study,J. Stat. Phys. 67:523–551 (1992).

    Article  Google Scholar 

  68. V. Horalek, ASTM grain-size model and related random tessellation models,Materials Characterization 25:263–284 (1990).

    Article  Google Scholar 

  69. S. Kumar and S. K. Kurtz, Computer simulation of a two-dimensional Poisson-Delaunay tesselation, to be published.

  70. J. D. Gibbons and S. Chakraborti,Nonparametric Statistical Inference, 3rd ed., (Marcel Dekker, New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Kurtz, S.K. A Monte Carlo study of size and angular properties of a three-dimensional Poisson-Delaunay cell. J Stat Phys 75, 735–748 (1994). https://doi.org/10.1007/BF02186878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186878

Key Words

Navigation