Skip to main content
Log in

Pattern formation by growing droplets: The touch-and-stop model of growth

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate a novel model of pattern formation phenomena. In this model spherical droplets are nucleated on a substrate and grow at constant velocity; when two droplets touch each other they stop their growth. We examine the heterogeneous process in which the droplet formation is initiated on randomly distributed centers of nucleation and the homogeneous process in which droplets are nucleated spontaneously at constant rate. For the former process, we find that in arbitrary dimensiond the system reaches a jamming state where further growth becomes impossible. For the latter process, we observe the appearance of fractal structures. We develop mean-field theories that predict that the fraction of uncovered material Φ(t) approaches to the jamming limit as Φ(t)−Φ(∞)∼exp(Ct d) for the heterogeneous process and as a power law for the homogeneous process. Exact solutions in one dimension are obtained and numerical simulations ford=1–3 are performed and compared with mean-field predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Cristian,The Theory of Phase Transformations in Metals and Alloys, Part 1: Equilibrium and General Kinetic Theory (Pergamon Press, New York, 1981).

    Google Scholar 

  2. J. D. Gunton and M. Droz,Introduction to the Theory of Metastable and Unstable States (Springer-Verlag, New York, 1983).

    Google Scholar 

  3. R. J. Field and M. Burger, eds.,Oscillations and Travelling Waves in Chemical Systems (Wiley, New York, 1985).

    Google Scholar 

  4. D. Beysens and C. M. Cnobler,Phys. Rev. Lett. 57:1433 (1986).

    Article  Google Scholar 

  5. J. A. Glazier and D. Weaire,J. Phys. Cond. Matter 4:1867 (1992).

    Article  Google Scholar 

  6. A. T. Florence, T. K. Law, and T. L. Whatley,J. Colloid Interface Sci. 107:584 (1985).

    Article  Google Scholar 

  7. B. J. Mason,The Physics of Clouds (Oxford University Press, Oxford, 1957).

    Google Scholar 

  8. R. Zallen,The Physics of Amorphous Solids (Wiley, New York, 1983).

    Google Scholar 

  9. K. J. Maloy, J. Feder, and T. Jossang,Phys. Rev. Lett. 55:2688 (1985).

    Article  PubMed  Google Scholar 

  10. B. Lewis and J. C. Anderson,Nucleation and Growth of Thin Films (Academic Press, New York, 1978).

    Google Scholar 

  11. M. Hasegawa and M. Tanemura,Ann. Inst. Stat. Math. B 28:509 (1976).

    Google Scholar 

  12. J. W. Evans,Rev. Mod. Phys. 65:1281 (1993).

    Article  Google Scholar 

  13. K. Sekimoto,Int. J. Mod. Phys. B 5:1843 (1991).

    Article  Google Scholar 

  14. H. J. Herrmann, G. Mantica, and D. Bessis,Phys. Rev. Lett. 65:3223 (1990); H. J. Herrmann,Pour la Sci. 165:17 (1991).

    Article  Google Scholar 

  15. S. S. Manna,Physica A 187:373 (1992).

    Article  Google Scholar 

  16. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  17. S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943).

    Article  Google Scholar 

  18. I. M. Lifshitz,Adv. Phys. 13:483 (1964).

    Article  Google Scholar 

  19. R. M. Bradley and P. N. Strenski,Phys. Rev. B 40:8967 (1989).

    Article  Google Scholar 

  20. Yu. A. Andrienko, N. V. Brilliantov, and P. L. Krapivsky,Phys. Rev. A. 45:2263 (1992); P. L. Krapivsky,J. Chem. Phys. 97:8817 (1992).

    Article  Google Scholar 

  21. T. Vicsek,Physica A 168:490 (1990).

    Article  Google Scholar 

  22. D. W. Boyd,Mathematica 20:170 (1973).

    Google Scholar 

  23. S. S. Manna and H. J. Herrmann,J. Phys. A 24:L481 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrienko, Y.A., Brilliantov, N.V. & Krapivsky, P.L. Pattern formation by growing droplets: The touch-and-stop model of growth. J Stat Phys 75, 507–523 (1994). https://doi.org/10.1007/BF02186870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186870

Key Words

Navigation