Skip to main content
Log in

Shapes of growing droplets—A model of escape from a metastable phase

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Nucleation from a metastable state is studied for an Ising ferromagnet with nearest and next nearest neighbor interaction and at very low temperatures. The typical escape path is shown to follow a sequence of configurations with a growing droplet of stable phase whose shape is determined by dynamical considerations and differs significantly from the equilibrium shape corresponding to the instantaneous volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces.Phil. Trans. Soc. 243A:40–359 (1951).

    Google Scholar 

  2. H. van Beijeren and I. Nolden,The Roughening Transition, W. Schommers and P. von Blackenhagen, eds. (Springer, Berlin, 1987), pp. 259–300.

    Google Scholar 

  3. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behaviour of stochastic dynamics: A pathwise approach,J. Stat. Phys. 35:603–634 (1984).

    Article  Google Scholar 

  4. R. L. Dobrushin, R. Kotecký, and S. Shlosman,The Wulff Construction: A Global Shape from Local Interactions (AMS, Providence, Rhode Island, 1992).

    Google Scholar 

  5. M. I. Freidlin and A. D. Wentzell,Random Perturbations of Dynamical Systems (Springer-Verlag, New York, 1979).

    Google Scholar 

  6. R. Holley, Possible rates of convergence in finite range, attractive spin systems,Contemp. Math. 41:215–234 (1985).

    Google Scholar 

  7. C. Herring, Some theorems on the free energies of crystal surfaces,Phys. Rev. 82:87–93 (1951).

    Article  Google Scholar 

  8. R. Kotecký and E. Olivieri, Droplet dynamics for asymmetric Ising model,J. Stat. Phys. 70:1121–1148 (1993).

    Article  Google Scholar 

  9. R. Kotecký and E. Olivieri, Stochastic models for nucleation and crystal growth, inProceedings of the International Workshop, Probabalistic Methods in Mathematical Physics (Siena, 1991), F. Guerra, M. I. Loffredo, and C. Marchioro, eds. (World Scientific, Singapore, 1992), pp. 264–275.

    Google Scholar 

  10. F. Martinelli, E. Olivieri, and E. Scoppola, Metastability and exponential approach to equilibrium for low-temperature stochastic models.J. Stat. Phys. 61:1105–1119 (1990).

    Article  Google Scholar 

  11. E. J. Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber dynamics at very low temperatures,Commun. Math. Phys. 137:209–230 (1991).

    Google Scholar 

  12. E. J. Neves and R. H. Schonmann, Behavior of droplets for a class of Glauber dynamics at very low temperature,Prob. Theory Related Fields 91:331–354 (1992).

    Article  Google Scholar 

  13. C. Rottmann and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions,Phys. Rep. 103:59–79 (1984).

    Article  Google Scholar 

  14. R. H. Schonmann, The pattern of escape from metastability of a stochastic Ising model,Commun. Math. Phys. 147:231–240 (1992).

    Article  Google Scholar 

  15. R. H. Schonmann, Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region, to be published (1993).

  16. G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflachen,Z. Krystallogr. Mineral. 34:449 (1901).

    Google Scholar 

  17. R. K. P. Zia,Interfacial Problems in Statistical Physics, K. C. Bowler and A. J. McKane, eds.. (SUSSP, Edinburg, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotecký, R., Olivieri, E. Shapes of growing droplets—A model of escape from a metastable phase. J Stat Phys 75, 409–506 (1994). https://doi.org/10.1007/BF02186869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186869

Key Words

Navigation