Skip to main content
Log in

The phase diagram of the Flory-Huggins-de Gennes model of a binary polymer blend

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We undertake a numerical study of the Flory-Huggins-de Gennes functional ind=3 dimensions describing a polymer blend. By discretising the functional on a three-dimensional lattice and employing the hybrid Monte Carlo simulation algorithm, we investigate to what extent the inclusion of the term describing fluctuations in local polymer concentration alters the phase diagram of the model. We find that, despite the relatively small weight of the fluctuation term, the coexistence curve is shifted by an appreciable amount from that predicted by naive mean-field theory, which ignores such spatial fluctuations. The direction of the shift is consistent with that already observed in experiment and in simulations of microscopic models of polymer blends. A finite-size scaling analysis indicates that the critical behavior of the model seems to belong to the 3D Ising universality class rather than being mean-field in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1986).

    Google Scholar 

  2. M. L. Huggins,J. Chem. Phys. 9:440 (1941).

    Article  Google Scholar 

  3. P. J. Flory,J. Chem. Phys. 9:660 (1941).

    Article  Google Scholar 

  4. A. Sariban and K. Binder,J. Chem. Phys.,86:5859 (1987).

    Article  Google Scholar 

  5. Th. G. Scholte,J. Polymer Sci. A-2 8:841 (1970); C. T. Murray, J. W. Gilmer, and R. S. Stein,Macromolecules 18:996 (1985); H. Ito, T. P. Russell, and G. D. Wignall,Macromolecules 20:2213 (1987); F. S. Bates,Macromolecules 20:2221 (1987).

    Article  Google Scholar 

  6. A. Sariban and K. Binder,Macromolecules 21:711 (1988).

    Article  Google Scholar 

  7. E. A. Guggenheim,Proc. R. Soc. A 183:203 (1944); T. A. Orofino and P. J. Flory,J. Chem. Phys. 26:1067 (1957); M. L. Huggins,J. Chem. Phys. 75:1255 (1971); M. Muthukumar,J. Chem. Phys. 85:4722 (1986); M. G. Bawendi and K. F. Freed,J. Chem. Phys. 88:2741 (1988).

    Google Scholar 

  8. K. S. Schweizer and J. G. Curro,Phys. Rev. Lett.,60:809 (1988);J. Chem. Phys. 88:7242 (1988);Chem. Phys. 149:105 (1990).

    Article  Google Scholar 

  9. R. Holyst and T. A. Vilgis,J. Chem. Phys. 99:4835 (1993).

    Article  Google Scholar 

  10. P. G. de Gennes,J. Chem. Phys. 72:4756 (1980).

    Article  Google Scholar 

  11. P. Pincus,J. Chem. Phys. 75:1996 (1981).

    Article  Google Scholar 

  12. K. Binder,J. Chem. Phys. 79:6387 (1983).

    Article  Google Scholar 

  13. D. W. Hair, E. K. Hobbie, A. I. Nakatani, and C. C. Han,J. Chem. Phys. 96: 9133 (1992).

    Article  Google Scholar 

  14. G. Brown and A. Chakrabarti,J. Chem. Phys. 98:2451 (1993).

    Article  Google Scholar 

  15. J. D. Gunton, R. Toral, and A. Chakrabarti,Physica Scripta T33:12 (1990).

    Google Scholar 

  16. A. Chakrabarti, R. Toral, J. D. Gunton, and M. Muthukumar,Phys. Rev. Lett.,63: 2072 (1989);J. Chem. Phys. 92:6899 (1990).

    Article  Google Scholar 

  17. A. Sariban and K. Binder,Polymer Commun. 30:205 (1989).

    Google Scholar 

  18. A. Sariban and K. Binder,Macromolecules 24:578 (1991).

    Article  Google Scholar 

  19. B. M. Forrest and D. W. Heermann,J. Phys. (Paris)II 1:909 (1991).

    Article  Google Scholar 

  20. K. Binder,Phys. Rev. A 29:341 (1984).

    Article  Google Scholar 

  21. H.-P. Deutsch and K. Binder,Macromolecules 25:6214 (1993).

    Article  Google Scholar 

  22. H.-P. Deutsch and K. Binder,Europhys. Lett.,17:697 (1992).

    Google Scholar 

  23. H. P. Deutsch,J. Chem. Phys. 99:4825 (1993).

    Article  Google Scholar 

  24. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,Phys. Lett. B 195:216 (1987).

    Article  Google Scholar 

  25. B. Mehlig, D. W. Heermann, and B. M. Forrest,Phys. Rev. B 45:679 (1992);Mol. Phys. 76:1347 (1992); B. Mehlig and B. M. Forrest,Z. Phys. B 89:89 (1992); A. L. Ferreira and R. Toral,Phys. Rev. E 47:R3848 (1993).

    Article  Google Scholar 

  26. K. Binder and D. W. Heermann,Monte Carlo Simulations in Statistical Physics (Springer-Verlag, Heidelberg, 1988).

    Google Scholar 

  27. H.-P. Deutsch,J. Stat. Phys. 67:1039 (1992).

    Article  Google Scholar 

  28. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  29. G. S. Pawley, R. H. Swendsen, D. J. Wallace, and K. G. Wilson,Phys. Rev. B 29: 4030 (1984).

    Article  Google Scholar 

  30. H.-P. Deutsch and K. Binder,J. Phys. (Paris)II,3:1049 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

It is a pleasure to dedicate this paper to Oliver Penrose on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrest, B.M., Toral, R. The phase diagram of the Flory-Huggins-de Gennes model of a binary polymer blend. J Stat Phys 77, 473–489 (1994). https://doi.org/10.1007/BF02186853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186853

Key Words

Navigation