Skip to main content
Log in

Interfacial growth in driven Ginzburg-Landau models: Short and long-time dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Interfacial growth in driven systems is studied from the initial stage to the longtime regime. Numerical integrations of a Ginzburg-Landan type equation with a new flux term introduced by an external field are presented. The interfacial instabilities are induced by the external field. From the numerical results, we obtain the dispersion relation for the initial growth. During the intermediate temporal regime, fingers of a characteristic triangular shape could grow. Depending on the boundary conditions, the final state corresponds to strips, multifinger states, or a one-finger state. The results for the initial growth are interpreted by means of surface-driven and Mullins-Sekerka instabilities. The shape of the one-finger state is explained in terms of the characteristic length introduced by the external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Langer, inProceedings of Les Houches Summer School: Chance and Matter, J. Souletieet al., eds. (Elsevier, 1987).

  2. D. A. Kessler, J. Koplik, and H. Levine,Adv. Phys. 35:255 (1988).

    Google Scholar 

  3. P. Pelce, in:Dynamics of Curved Fronts (Academic Press, New York, 1988).

    Google Scholar 

  4. D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Schraiman, and Ch. Tang,Rev. Mod. Phys. 58:977 (1986).

    Google Scholar 

  5. D. Jasnow, inFar from Equilibrium Phase Transitions (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  6. G. Tryggvason and H. Aref,J. Fluid Mech. 136:1 (1983).

    Google Scholar 

  7. J. V. Maher,Phys. Rev. Lett. 54:1498 (1985).

    Google Scholar 

  8. D. A. Kessler and H. Levine,Phys. Rev. A 33:3625 (1986).

    Google Scholar 

  9. D. Jasnow and J. Vinals,Phys. Rev. A 40:3864 (1989).

    Google Scholar 

  10. J. Casademunt and D. Jasnow,Phys. Rev. Lett. 67:3677, (1991): J. Casademunt, D. Jasnow, and A. Hernández-Machado,Int. J. Mod. Phys. B 6:1647 (1992).

    Google Scholar 

  11. W. W. Mullins and R. F. Sekerka,J. Appl. Phys. 35:444 (1964).

    Google Scholar 

  12. P. G. Saffman and G. I. Taylor,Proc. R. Soc. A 245:312 (1958).

    Google Scholar 

  13. S. Katz, J. L. Lebowitz, and H. Spohn,Phys. Rev. B 28:1655 (1983);J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  14. K.-T. Leung and J. L. Cardy,J. Stat. Phys. 44:567 (1986); H. K. Janssen and B. Schimttman,Z. Phys. B 64:503 (1986).

    Google Scholar 

  15. J. L. Vallés and J. Marro,J. Stat. Phys. 43:441 (1986).

    Google Scholar 

  16. R. Dickman,Phys. Rev. A 38:2588, (1988).

    Google Scholar 

  17. K.-T. Leung, B. Schmittmann, and R. K. P. Zia,Phys. Rev. Lett. 62:1772 (1989).

    Google Scholar 

  18. A. Hernández-Machado and D. Jasnow,Phys. Rev. A 37:656 (1988); A. Hernández-Machado, H. Guo, J. L. Mozos, and D. Jasnow,Phys. Rev. A 39:4783 (1989).

    Google Scholar 

  19. K.-T. Leung,J. Stat. Phys. 50:405 (1988).

    Google Scholar 

  20. K.-T. Leung,J. Stat. Phys. 61:345, (1990).

    Google Scholar 

  21. D. H. Boal, B. Schmittmann, and R. K. P. Zia,Phys. Rev. A 43:5214 (1991).

    Google Scholar 

  22. C. Yeung, T. Rogers, A. Hernández-Machado, and D. Jasnow,J. Stat. Phys. 66: 1071 (1992).

    Google Scholar 

  23. C. Yeung, J. L. Mozos, A. Hernández-Machado, and D. Jasnow,J. Stat. Phys. 70: 1149 (1993).

    Google Scholar 

  24. J. L. Mozos, Ph.D. thesis, Universitat de Barcelona (1993).

  25. P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  26. J. D. Gunton, M. San Miguel, and P. S.Shani, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozos, J.L., Hernández-Machado, A. Interfacial growth in driven Ginzburg-Landau models: Short and long-time dynamics. J Stat Phys 74, 131–146 (1994). https://doi.org/10.1007/BF02186810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186810

Key Words

Navigation