Skip to main content
Log in

A microscopic aggregation model of droplet dynamics in warm clouds

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A microscopic model of warm clouds involving input of water droplets, dropletdroplet aggregation, droplet breakup, and precipitation is presented. Numerical simulations and analytical arguments indicate that after the stage of growth and just before precipitation sets in, a warm cloud is characterized by a droplet-size distribution which follows from an inverse power law as a function of the droplet size. When precipitation is taken into account, the above distribution is transformed into a distribution decaying exponentially with the droplet size, in agreement with field observations. It is suggested that the initiation of rainfall in a precipitating warm cloud can be viewed as an instability triggered by the presence of a power-law distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Rogers,A Short Course in Cloud Physics (Pergamon Press, Oxford, 1979).

    Google Scholar 

  2. W. R. Cotton and R. A. Anthes,Storm and Cloud Dynamics (Academic Press, New York, 1989).

    Google Scholar 

  3. S. Kinne, T. P. Ackerman, A. J. Heymsfield, F. P. J. Valero, K. Sassen, and J. D. Spinhirne,Monthly, Weather Rev. 120:661 (1992).

    Google Scholar 

  4. M. P. Valdez and K. C. Young,J. Atmos. Sci. 42:1024 (1985); E. E. Gossard, R. G. Strauch, and R. R. Rogers,J. Atmos. Oceanic. Technol. 7:815 (1990); R. R. Rogers, I. I. Zawadski, and E. E. Gossard,J. Q. R. Meteorol. Soc. 117:1341 (1991).

    Google Scholar 

  5. D. B. Johnson,J. Atmos. Sci. 37:2079 (1980).

    Google Scholar 

  6. J. W. Telford, T. S. Keck and S. K. Chai,J. Atmos. Sci. 41:3170 (1984); P. R. Jonas,Atmos. Res. 25:105 (1990).

    Google Scholar 

  7. H. Takayasu, I. Nishikawa and H. Tasaki,Phys. Rev. A. 37:3110 (1988); H. Takayasu,Phys. Rev. Lett. 63:2563 (1989).

    Google Scholar 

  8. H. Takayasu, M. Takayasu, A. Provata, and G. Huber,J. Stat. Phys. 65:725 (1991)

    Google Scholar 

  9. E. Lukacs,Characteristic Functions (Griffin, London, 1970).

    Google Scholar 

  10. E. W. Montroll and J. T. Bendler,J. Stat. Phys. 34:129 (1984); V. M. Zolotarev,Dokl. Akad. Nauk. SSSR 89:735 (1954); H. Takayasu,Fractals in the Physical Sciences (Manchester University Press, 1990).

    Google Scholar 

  11. W. Feller,An Introduction to Probability Theory and its Applications (Wiley New York, 1966).

    Google Scholar 

  12. P. Grassberger,Phys. Lett. A. 97:224 (1983).

    Google Scholar 

  13. M. Komabayasi, T. Gonda, and K. Isono,J. Met. Soc. Japan 42:330 (1964); P. R. Brazier-Smith, S. G. Jennings, and J. Latham,Proc. R. Soc. Lond. A 326:393 (1972).

    Google Scholar 

  14. J. S. Marshall and W. Mck Palmer,J Meteorol. 5:165 (1948).

    Google Scholar 

  15. P. Meakin,Physica A 171:1 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provata, A., Nicolis, C. A microscopic aggregation model of droplet dynamics in warm clouds. J Stat Phys 74, 75–89 (1994). https://doi.org/10.1007/BF02186807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186807

Key Words

Navigation