Skip to main content
Log in

Nonlocality of the Misra-Prigogine-Courbage semigroup

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the Markov semigroups constructed by Misra, Prigogine, and Courbage through nonunitary similarity transformations of Kolmogorov systems are not implementable by local point transformations, i.e., they are not the Frobenius-Perron semigroups associated with noninvertible point transformations, in contrast with the semigroups obtained by coarse-graining projections. Our result is a straightforward generalization of the proof of the nonlocality of the similarity transformation given by Goldstein, Misra, and Courbage and also of the previous illustration by Misra and Prigogine for the baker transformation and completes the characterization of the Misra-Prigogine-Courbage semigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Prigogine, C. George, F. Henin, and L. Rosenfeld,Chem. Scripta 4:5–32 (1973).

    Google Scholar 

  2. I. Prigogine,From Being to Becoming (Freeman, San Francisco, 1980).

    Google Scholar 

  3. B. Misra and I. Prigogine,Prog. Theor. Phys. Suppl. 69:101–110 (1980).

    Google Scholar 

  4. B. Misra, I. Prigogine, and M. Courbage,Physica A 98:1–26 (1979).

    Google Scholar 

  5. M. Courbage and B. Misra,Physica A 104:359–377 (1980).

    Google Scholar 

  6. S. Goldstein, B. Misra, and M. Courbage,J. Stat. Phys. 25:111–126 (1981).

    Article  Google Scholar 

  7. B. Misra and I. Prigogine,Lett. Math. Phys. 7:421–429 (1983).

    Article  Google Scholar 

  8. M. Courbage,Physica A 122:359–377 (1983).

    Google Scholar 

  9. B. Misra and I. Prigogine, Time probability and dynamics, inLong Time Predictions in Dynamical Systems, C. Horton, L. Reichl, V. Szebehely, eds. (Wiley, New York, 1983), pp. 21–43.

    Google Scholar 

  10. R. Goodrich, K. Gustafson, and B. Misra,J. Stat. Phys. 43:317–320 (1986).

    Article  Google Scholar 

  11. Z. Suchanecki and A. Weron,Expositiones Math. 8:67–79 (1990).

    Google Scholar 

  12. Z. Suchanecki,Physica A 187:249–266 (1992).

    Google Scholar 

  13. I. Antoniou and K. Gustafson,Physica A 197:153–166 (1993).

    Google Scholar 

  14. A. Lasota and M. C. Mackey,Probabilistic Properties of Deterministic Systems (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  15. V. Rokhlin,Am. Math. Soc. Transl. 39:1–36 (1964).

    Google Scholar 

  16. I. Cornfeld, S. Fomin, and Ya. Sinai,Ergodic Theory (Springer, Berlin, 1982).

    Google Scholar 

  17. I. Antoniou and S. Tasaki,Physica A 190:303–329 (1992).

    Google Scholar 

  18. I. Antoniou and I. Prigogine, Intrinsic irreversibility in classical and quantum mechanics, inThe Concept of Probability, E. Bitsakis and C. Nicolaides, eds. (Kluwer, Dordrecht, 1989), pp. 223–234.

    Google Scholar 

  19. I. Prigogine,Phys. Rep. 219:109–120 (1992).

    Article  Google Scholar 

  20. I. Antoniou and I. Prigonine,Physica A 192:43–464 (1993).

    Google Scholar 

  21. I. Antoniou, K. Gustafson, Z. Suchanecki, and A. Vershik, Dilation of Markov processes to dynamical systems, to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchanecki, Z., Antoniou, I. & Tasaki, S. Nonlocality of the Misra-Prigogine-Courbage semigroup. J Stat Phys 75, 919–928 (1994). https://doi.org/10.1007/BF02186750

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186750

Key Words

Navigation