Skip to main content
Log in

Damage spreading in a single-component irreversible reaction process: Dependence of the system's immunity on the Euclidean dimension

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The spreading of a globally distributed damage, created in the stationary regime, is studied in a single-component irreversible reaction process, i.e., the BK model [Browne and Kleban,Phys. Rev. A 40, 1615 (1989)]. The BK model describes one variant of the A+A→A2 reaction process on a lattice in contact with a reservoir of A species. The BK model has a single parameter, namely the rate of arrival of A species to the lattice (Y). The model, exhibits an irreversible phase transition between a stationary reactive state with production of A2 species and a poisoned state with the lattice fully covered by A species. The transition takes place at critical points (Y C ) which solely depend on the Euclidean dimensiond. It is found that the system is immune ford=1 andd=2, in the sense that even 100% of initial damage is healed within a finite healing period (T H ). Within the reactive regime,T H diverges when approachingY C according toT H ∞ (Y C Y)−α, with α⋟1.62 and α⋟1.08 ford=1 andd=2, respectively. Ford=3 a frozen-chaotic transition is found close toY s ⋟0.4125, i.e., well inside the reactive regime 0≤YY C ⋟0.4985. Just atY S the damageD(t) heals according toD(t)t −δ, with δ⋟0.71. For the frozen-chaotic transition atd=3 the order parameter critical exponent β⋟0.997 is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. E. Stanley, D. Stauffer, J. Kertész, and H. J. Herrmann,Phys. Rev. Lett. 59: 2326 (1987).

    Google Scholar 

  2. O. Golinelli and B. Derrida,J. Phys. A: Math. Gen. 22:L939 (1989).

    Google Scholar 

  3. L. de Arcangelis, A. Coniglio, and H. J. Herrmann,Europhys. Lett. 9:749 (1989).

    Google Scholar 

  4. A. M. Mariz,J. Phys. A: Math. Gen. 23:979 (1990).

    Google Scholar 

  5. H. J. Herrmann, Simulation of random growth processes, inThe Monte Carlo Method in Condensed Matter physics, K. Binder, ed. (Springer-Verlag, Heidelberg 1992), p. 93.

    Google Scholar 

  6. E. V. Albano,Phys. Rev. Lett. 72:108 (1994).

    Google Scholar 

  7. E. V. Albano,Phys. Rev. E 50:1129, (1994).

    Google Scholar 

  8. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, Heidelberg, 1985).

    Google Scholar 

  9. R. M. Ziff, E. Gulari, and Y. Barshad,Phys. Rev. Lett. 56:2553 (1986).

    PubMed  Google Scholar 

  10. P. Meakin and D. J. Scalapino,J. Chem. Phys. 87:731 (1987).

    Google Scholar 

  11. D. A. Browne and P. Kleban,Phys. Rev. A 40:1615 (1989).

    Google Scholar 

  12. T. Aukrust, D. A. Browne, and I. Webman,Phys. Rev. A 41:5294 (1990).

    Google Scholar 

  13. E. V. Albano,Surface Sci. 235:351 (1990).

    Google Scholar 

  14. J. W. Evans and M. S. Miesch,Phys. Rev. Lett. 66:833 (1991).

    Google Scholar 

  15. E. V. Albano,Phys. Rev. Lett. 69:656 (1992).

    Google Scholar 

  16. E. V. Albano,J. Stat. Phys. 69:643 (1992).

    Google Scholar 

  17. I. Jensen and R. Dickman,Phys. Rev. E 48:1710 (1993).

    Google Scholar 

  18. I. Jensen and R. Dickman,J. Stat. Phys. 71:89 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albano, E.V. Damage spreading in a single-component irreversible reaction process: Dependence of the system's immunity on the Euclidean dimension. J Stat Phys 78, 1147–1155 (1995). https://doi.org/10.1007/BF02183707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183707

Key Words

Navigation