Skip to main content
Log in

Static and time-dependent perturbations of the classical elliptical billiard

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The elliptical billiard problem defines a two-dimensional integrable discrete dynamical system. Integrability not being a robust property, we study some static and time-dependent perturbations of this problem. For the static case, we observe the transition from integrability to chaos, on some perturbations of the ellipse. Then we study time-dependent perturbations, supposing that the boundary deforms periodically with the time, remaining always an ellipse. We investigate numerically the now four-dimensional phase space, looking mainly at the question of whether or not the velocity of a given trajectory may increase indefinitely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Barth, Elliptic moduli curves and Poncelet polygons, Advanced Workshop on Algebraic Geometry, ICTP, Trieste, Italy (1994).

  2. M. V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard,Eur. J. Phys. 2:91–102 (1981).

    Google Scholar 

  3. L. A. Bunimovich, On absolutely focusing mirrors, inErgodic Theory and Related Topics, U. Kringel et al., eds. (Springer, Berlin, 1993); L. A. Bunimovich, Conditions on stochasticity of two-dimensional billiards,Chaos 1:187–193 (1991).

    Google Scholar 

  4. E. Canale and R. Markarian, Simulación de billares planos, inAnales IEEE, Segundo Seminario de Informática en el Uruguay (1991), pp. 71–96; and private communication.

  5. S.-J. Chang and R. Friedberg, Elliptical billiards and Poncelet's theorem,J. Math. Phys. 29(7):1537–1550 (1988).

    Google Scholar 

  6. V. J. Donnay, Using integrability to produce chaos: Billiards with positive entropy,Commun. Math. Phys. 141:225–257 (1991).

    Google Scholar 

  7. R. Douady, Applications du théorème des tores invariants, Thèse de 3ème Cycle, Université Paris VII (1982).

  8. J. Koiller, R. Markarian, S. Oliffson Kamphorst, and S. Pinto de Carvalho, A geometric framework for time-dependent billiards, inNew Trends in Hamiltonian Systems (World Scientific, Singapore, to appear).

  9. J. Koiller, R. Markarian, S. Oliffson Kamphorst, and S. Pinto de Carvalho, Time-dependent Billiards, Preprint (1994);Nonlinearity, to appear.

  10. T. Krüger, L. D. Pustyl'nikov, and S. E. Troubetzkoy, Acceleration of bouncing balls in external fields,Nonlinearity 8:397–410 (1995).

    Google Scholar 

  11. N. Kutz and E. Zorn, Adiabatische Invarianten und Hannay-Winkel im reichteckigen Billard, Studienarbeit, Technischen Universität Berlin (1988).

  12. S. Laederich and M. Levi, Invariant curves and time dependent potentials,Ergodic Theory Dynam. Syst. 11:365–378 (1991).

    Google Scholar 

  13. P. Levallois, Non-integrabilité des billiards définis par certaines perturbations algébriques d'une ellipse et du flot géodesique de certaines perturbations algébriques d'un ellipsoide, Thèse, Université Paris VII (1993).

  14. P. Levallois and M. B. Tabanov, Séparation des séparatrices du billiard elliptique pour une perturbation algébrique et symétrique de l'ellipse,C. R. Acad. Sci. Paris I 316:589–592 (1993).

    Google Scholar 

  15. M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials,Commun. Math. Phys. 143:43–83 (1991).

    Google Scholar 

  16. A. J. Lichtenberg and M. A. Liebermann,Regular and Stochastic Motion (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  17. C. Liverani and M. Wojtkowski, Ergodicity in Hamiltonian systems, SUNY, Stony Brook, Preprint (1992).

  18. R. Markarian, New ergodic billiards: Exact results,Nonlinearity 6:819–841 (1993).

    Google Scholar 

  19. R. Markarian, S. Oliffson Kamphorst, and S. Pinto de Carvalho, Chaotic properties of the elliptical stadium, preprint (1994);Commun. Math. Phys., to appear.

  20. J. Mather, Glancing billiards,Ergodic Theory Dynam. Syst. 2:397–403 (1982).

    Google Scholar 

  21. L. D. Pustyl'nikov, Stable and oscillating motions in nonautonomous dynamical systems II.Trans. Moscow Math. Soc. 2:1–101 (1978).

    Google Scholar 

  22. Ya. G. Sinai,Introduction to Ergodic Theory (Princeton University Press, Princeton, New Jersey, 1976).

    Google Scholar 

  23. S. Tabachnikov, Billiards, Preprint, University of Arkansas (1994); in “Panoramas et Synthèses,” SMF, to appear.

  24. M. B. Tabanov, Splitting of separatrices for Birkhoff's billiard under symmetrical perturbation of an ellipse, inRencontres Franco-Russes de Géometrie (CIRM, France, 1992).

    Google Scholar 

  25. M. Wojtkowski, Principles for the design of billiards with non vanishing Lyapunov exponents,Commun. Math. Phys. 105:391–414 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koiller, J., Markarian, R., Oliffson Kamphorst, S. et al. Static and time-dependent perturbations of the classical elliptical billiard. J Stat Phys 83, 127–143 (1996). https://doi.org/10.1007/BF02183642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183642

Key Words

Navigation