Skip to main content
Log in

Renormalization group at criticality and complete analyticity of constrained models: A numerical study

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the majority rule transformation applied to the Gibbs measure for the 2D Ising model at the critical point. The aim is to show that the renormalized Hamiltonian is well defined in the sense that the renormalized measure is Gibbsian. We analyze the validity of Dobrushin-Shlosman uniqueness (DSU) finite-size condition for the “constrained models” corresponding to different configurations of the “image” system. It is known that DSU implies, in our 2D case, complete analyticity from which, as recently shown by Haller and Kennedy. Gibbsianness follows. We introduce a Monte Carlo algorithm to compute an upper bound to Vasserstein distance (appearing in DSU) between finite-volume Gibbs measures with different boundary conditions. We get strong numerical evidence that indeed the DSU condition is verified for a large enough volumeV for all constrained models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Benfatto, E. Marinari, and E. Olivieri, Some numerical results on the block spin transformation for the 2D Ising model at the critical point,J. Stat. Phys. 78:731–757 (1995).

    Google Scholar 

  2. C. Cammarota, The large block spin interaction.Nuovo Cimento 96B:1–16 (1986).

    Google Scholar 

  3. M. Cassandro and G. Gallavotti, The Lavoisier law and the critical point,Nuovo Cimento 25B:691 (1975).

    Google Scholar 

  4. R. L. Dobrushin, Prescribing a system of random variables by conditional distributions,Theory Prob. Appl. 15:453–486 (1970).

    Google Scholar 

  5. R. L. Dobrushin, Lecture given at the workshop, Probability and Physics, Renkum, Holland (1995).

  6. R. L. Dobrushin and S. Shlosman, Constructive criterion for the uniqueness of Gibbs fields, (Birkhauser, Boston, 1985), pp. 347–370.

    Google Scholar 

  7. R. L. Dobrushin and S. Shlosman, Completely analytical Gibbs fields, (Birkhauser, Boston, 1985), pp. 371–403.

    Google Scholar 

  8. R. L. Dobrushin and S. Shlosman, Completely analytical interactions constructive description.J. Stat. Phys. 46:983–1014 (1987).

    Google Scholar 

  9. A. C. D. van Enter, III-defined block-spin transformations at arbitrarily high temperatures,J. Stat. Phys. 83:761–765 (1996).

    Google Scholar 

  10. A. C. D. van Enter, On the possible failure of the Gibbs property for measures on lattice systems, preprint (1996).

  11. A. C. D. van Enter, R. Fernández, and R. Kotecký, Pathological behavior of renormalization group maps at high field and above the transition temperature,J. Stat. Phys. 79:969–992 (1995).

    Google Scholar 

  12. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory,J. Stat. Phys. 72:879–1167 (1994).

    Google Scholar 

  13. R. Fernández and C. Pfister, Non quasi-local projections of Gibbs states, preprint (1994).

  14. R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization group transformations,J. Stat. Phys. 20:499–545 (1979).

    Google Scholar 

  15. K. Haller and T. Kennedy, Absence of renormalization group pathologies near the critical temperature—Two examples, University of Arizona preprint, Austin Archives 95–505 (1995).

  16. R. B. Israel, Banach algebras and Kadanoff transformations, inRandom Fields, Vol. II, pp. 593–608, J. Fritz, J. L. Lebowitz, and D. Szasz, eds. (North-Holland, Amsterdam, 1981).

    Google Scholar 

  17. H. de Jong and Ch. Maes, Extended application of high noise constructive criteria for ergodicity of interacting particle systems,Int. J. Mod. Phys. C 7:1–18 (1996).

    Google Scholar 

  18. T. Kennedy, A fixed point equation for the high temperature phase of discrete lattice spin systems.J. Stat. Phys. 59:195 (1990).

    Google Scholar 

  19. T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point,J. Stat. Phys. 72:15 (1993).

    Google Scholar 

  20. T. Kennedy, Private communication.

  21. O. K. Kozlov: Gibbs description of a system of random variables,Probl. Inform. Transmission 10:258–265 (1974).

    Google Scholar 

  22. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  23. J. Lorinczi, and K. Vande Velde, A note on the projection of Gibbs measures,J. Stat. Phys. 77:881–887 (1994).

    Google Scholar 

  24. Ch. Maes, Private communication.

  25. Ch. Maes, Coupling interacting particle systems,Rev. Math. Phys. 5:457–475 (1995).

    Google Scholar 

  26. F. Martinelli and E. Olivieri, Finite volume mixing conditions for lattice spin systems and exponential approach to equilibrium of Glauber dynamics, inProceedings of 1992 Les Houches Conference on Cellular Automata and Cooperative Systems, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).

    Google Scholar 

  27. F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case,Commun. Math. Phys. 161:447–486 (1994).

    Google Scholar 

  28. F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II. The general case,Commun. Math. Phys. 161:487–514 (1994).

    Google Scholar 

  29. F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization group transformations for the Ising model,J. Stat. Phys. 72:1169–1177 (1994).

    Google Scholar 

  30. F. Martinelli and E. Olivieri, Instability of renormalization group pathologies under decimation,J. Stat. Phys. 79:25–42 (1995).

    Google Scholar 

  31. F. Martinelli, E. Olivieri, and R. Schonmann, For 2-D lattice spin systems weak mixing implies strong mixing,Commun. Math. Phys. 165:33–47 (1994).

    Google Scholar 

  32. Th. Niemeijer and M. J. van Leeuwen, Renormalization theory for Ising-like spin systems. inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).

    Google Scholar 

  33. E. Olivieri, On a cluster expansion for lattice spin systems: A finite Size condition for the convergence.J. Stat. Phys. 50:1179–1200 (1988).

    Google Scholar 

  34. E. Olivieri and P. Picco, Cluster expansion for D-dimensional lattice systems and finite volume factorization properties.J. Stat. Phys. 59:221–256 (1990).

    Google Scholar 

  35. R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian,Commun. Math. Phys. 124:1–7 (1989).

    Google Scholar 

  36. S. Shlosman, Uniqueness and half-space non-uniqueness of Gibbs states in Czech models.Theor. Math. Phys. 66:284–293 (1986).

    Google Scholar 

  37. W. G. Sullivan, Potentials for almost Markovian random fields,Commun. Math. Phys. 33:61–74 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, E.N.M., Olivieri, E. Renormalization group at criticality and complete analyticity of constrained models: A numerical study. J Stat Phys 86, 1117–1151 (1997). https://doi.org/10.1007/BF02183617

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183617

Key Words

Navigation