Skip to main content
Log in

Applications of periodic orbit theory toN-particle systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In recent years a number of new techniques have become available in nonequilibrium statistical mechanics, all derived from dynamical system theory, especially from the thermodynamic formalism of Ruelle. We focus here on periodic orbit theory, and we compare it with a novel approach proposed by Evans, Cohen, and Morriss, and developed further by Gallavotti and Cohen. We argue that the two approaches based on such theories are equivalent for systems of many particles if the underlying dynamics is similar to that of Anosov systems, and that such equivalence should remain in more general situations. We extend our previous explanation of irreversibility in the thermostatted Lorentz gas toN-particle diffusion and shearing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gallavotti and E. G. D. Cohen,Phys. Rev. Lett. 74:2694 (1995);J. Stat. Phys. 80:931 (1995).

    Google Scholar 

  2. G. P. Morriss and L. Rondoni,Aust. J. Phys. 49:51 (1996).

    Google Scholar 

  3. G. P. Morriss,Phys. Lett. 122A:236 (1987);Phys. Rev. A 37:2118 (1988);Phys. Lett. A 143:307 (1989);Phys. Rev. A 39:4811 (1989).

    Google Scholar 

  4. P. Gaspard,J. Stat. Phys. 68:673 (1992);Chaos 3:427 (1993).

    Google Scholar 

  5. D. J. Evans and G. P. Morriss,Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  6. S. Sarman, D. J. Evans, and A. Baranyai,Physica A 208:191 (1994).

    Google Scholar 

  7. H. A. Posch and W. G. Hoover,Phys. Rev. A 38:473 (1988); G. P. Morriss,Phys. Rev. A 37:2118 (1988).

    Google Scholar 

  8. D. J. Evans, E. G. D. Cohen, and G. P. Morriss,Phys. Rev. A 42:5990 (1990).

    Google Scholar 

  9. B. Moran and W. G. Hoover,J. Stat. Phys. 48:709 (1987).

    Google Scholar 

  10. W. N. Vance,Phys. Rev. Lett. 69:1356 (1992).

    Google Scholar 

  11. J. P. Lloyd, M. Niemeyer, L. Rondoni, and G. P. Morriss,Chaos 5:536 (1995).

    Google Scholar 

  12. G. P. Morriss and D. J. Evans,Phys. Rev. A 39:6335 (1989).

    Google Scholar 

  13. E. G. D. Cohen,Physica A 213:293 (1995).

    Google Scholar 

  14. P. Gaspard and F. Baras,Phys. Rev. E 51:5332 (1995); J. R. Dorfman and P. Gaspard,Phys. Rev. E 51:28 (1995); P. Gaspard and J. R. Dorfman,Phys. Rev. E 52:3525 (1995).

    Google Scholar 

  15. D. J. Evans, E. G. D. Cohen, and G. P. Morriss,Phys. Rev. Lett. 71:2401, 3616 (1993).

    Google Scholar 

  16. G. Gallavotti,J. Stat. Phys. 78:1571 (1995).

    Google Scholar 

  17. G. P. Morriss and L. Rondoni,J. Stat. Phys. 75:553 (1994).

    Google Scholar 

  18. G. P. Morriss, L. Rondoni, and E. G. D. Cohen,J. Stat. Phys. 80:35 (1995).

    Google Scholar 

  19. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai,Phys. Rev. Lett. 70:220 (1993);Commun. Math. Phys. 154:569 (1993).

    Google Scholar 

  20. G. Gallavotti, Reversible Anosov diffeomorphisms and large deviations, preprint.

  21. D. Ruelle,Thermodynamic Formalism (Addison-Wesley Reading, Massachusetts, 1978).

    Google Scholar 

  22. W. Parry,Commun. Math. Phys. 106:267 (1986).

    Google Scholar 

  23. G. Gallavotti, personal communication.

  24. Focus issue on periodic orbit theory,Chaos 2(1) (1992).

  25. P. Cvitanovic, The power of chaos, inApplied Chaos, J. H. Kim and J. Stringer, eds. (Wiley, New York, 1992), p. 413.

    Google Scholar 

  26. G. P. Morriss and L. Rondoni, Unpublished.

  27. L. Rondoni and G. P. Morriss,Phys. Rev. E 53:2143 (1996).

    Google Scholar 

  28. S. Goldstein, C. Kipnis, and N. J. Ianiro,J. Stat. Phys. 41:915 (1985).

    Google Scholar 

  29. W. G. Hoover,Molecular Dynamics (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  30. S. Sarman, D. J. Evans, and G. P. Morriss,Phys. Rev. A 45:2233 (1992).

    Google Scholar 

  31. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57:617 (1985).

    Google Scholar 

  32. C. Grebogi, E. Ott, and J. A. Yorke,Phys. Rev. A 37:1711 (1988).

    Google Scholar 

  33. R. Artuso, E. Aurell, and P. Cvitanovic,Nonlinearity 3:325 (1990).

    Google Scholar 

  34. R. Bowen,Am. J. Math. 94:413 (1972).

    Google Scholar 

  35. P. Cvitanovic, P. Gaspard, and T. Schreiber,Chaos 2:85 (1992).

    Google Scholar 

  36. C. Grebogi, Personal communication.

  37. L. E. Reichl,A Modern Course in Statistical Physics (Texas University Press, Austin, Texas, 1984).

    Google Scholar 

  38. S. Tasaki and P. Gaspard, Fractal distribution and Fick's law in a reversible chaotic system, inTowards the Harnessing of Chaos, M. Yamaguti, ed. (Elsevier, Amsterdam, 1994).

    Google Scholar 

  39. T. Tel, J. Vollmer, and W. Breymann, Transient chaos: The origin of transport in driven systems, preprint (1995).

  40. R. Artuso, Personal communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondoni, L., Morriss, G.P. Applications of periodic orbit theory toN-particle systems. J Stat Phys 86, 991–1009 (1997). https://doi.org/10.1007/BF02183611

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183611

Key Words

Navigation