Skip to main content
Log in

Stationary nonequilibrium states in boundary-driven Hamiltonian systems: Shear flow

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate stationary nonequilibrium states of systems of particles moving according to Hamiltonian dynamics with specified potentials. The systems are driven away from equilibrium by Maxwell-demon “reflection rules” at the walls. These deterministic rules conserve energy but not phase space volume, and the resulting global dynamics may or may not be time reversible (or even invertible). Using rules designed to simulate moving walls, we can obtain a stationary shear flow. Assuming that for macroscopic systems this flow satisfies the Navier-Stokes equations, we compare the hydrodynamic entropy production with the average rate of phase-space volume compression. We find that they are equalwhen the velocity distribution of particles incident on the walls is a local Maxwellian. An argument for a general equality of this kind, based on the assumption of local thermodynamic equilibrium, is given. Molecular dynamic simulations of hard disks in a channel produce a steady shear flow with the predicted behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz,Fluid Mechanics, 2nd ed. (Pergamon Press, Oxford, 1987); D. F. Rogers,Laminar Flow Analysis (Cambridge University Press, Cambridge, 1992); S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962); R. Balian,From Microscopies to Macroscopics (Springer-Verlag, Berlin, 1991), esp. Chapter 14.

    Google Scholar 

  2. M. Gross and P. C. Hohenberg,Rev. Mod. Phys. 65:851 (1993).

    Google Scholar 

  3. M. Q. Zhang, J.-S. Wang, J. L. Lebowitz, and J. L. Vallés,J. Stat. Phys. 52:1461 (1988); J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Long range correlations in molecular fluids,Annu. Rev. Phys. Chem. 45:213 (1994).

    Google Scholar 

  4. J. L. Lebowitz and P. G. Bergmann, Irreversible Gibbsian ensembles,Ann. Phys. 1:1 (1957); S. Goldstein, N. I. Ianiro, and C. Kipnis,J. Stat. Phys. 41:915 (1985).

    Google Scholar 

  5. S. Goldstein, J. L. Lebowitz, and K. Ravishankar, Approach to equilibrium in models of a system in contact with a heat bath,J. Stat. Phys. 43:303 (1986); J. L. Lebowitz and H. Spohn, Stationary non-equilibrium states of infinite harmonic systems,Commun. Math. Phys. 54:97 (1977).

    Google Scholar 

  6. H. A. Posch and W. G. Hoover,Phys. Rev. A 39:2175 (1989); W. G. Hoover, H. A. Posch, and C. G. Hoover,Chaos 2:245 (1992); H. A. Posch and W. G. Hoover, inMolecular Liquids: New Perspectives in Physical Chemistry, J. J. C. Teixeira-Dias, ed. (Kluwer, Dordrecht, 1992).

    Google Scholar 

  7. D. Evans and G. Morriss,Statistical Mechanics of Nonequilibrium Liquids (Academic Press, New York, 1990).

    Google Scholar 

  8. W. G. Hoover,Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  9. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai,Phys. Rev. Lett. 70:2209 (1993);Commun. Math. Phys. 154:569 (1993).

    Google Scholar 

  10. G. L. Eyink and J. L. Lebowitz, Generalized Gaussian dynamics, phase-space reduction, and irreversibility: A comment, inMicroscopic Simulations of Complex Hydrodynamic Phenomena, M. Mareschal and B. L. Holian, eds. (Plenum Press, New York, 1992), p. 323; G. Gallavotti, Ergodicity, ensembles, irreversibility in Boltzmann and beyond,J. Stat. Phys. 78:1571–1589 (1995).

    Google Scholar 

  11. H. Spohn,Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991); A DeMasi and E. Presutti,Mathematical Methods for Hydrodynamic Limits (Springer-Verlag, Berlin, 1991); J. J. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamical behavior,J. Stat. Phys. 51:841–862 (1988); G. Eyink, J.-L. Lebowitz, and H. Spohn,Commun. Math. Phys. 140:119 (1991).

    Google Scholar 

  12. W. G. Hoover, H. A. Posch, B. L. Holian, M. J. Gillan, M. Mareschal, and C. Massobrio,Mol. Simul. 1:79 (1987); D. J. Evans, E. G. D. Cohen, and G. P. Morriss,Phys. Rev. A 42:5990 (1990); see also J. R. Dorfman, From molecular chaos to dynamical chaos, Lecture Notes, preprint (1995).

    Google Scholar 

  13. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in shearing steady flows,Phys. Rev. Lett. 71:2401–2404 (1993).

    Google Scholar 

  14. G. P. Dettman and G. P. Morriss, Proof of conjugate pairing for an isokinetic thermostat, preprint (1995).

  15. G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states,J. Stat. Phys. 80:931–970 (1995).

    Google Scholar 

  16. G. Gallavotti, InTopics in Chaotic Dynamics, P. L. Garrido and J. Marro, eds. (Springer-Verlag, Berlin, 1995); G. Gallavotti, Reversible Asonov diffeomorphisms and large deviations,Math. Phys. Electron. J. 1:1–12 (1995); G. Gallavotti, Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem,J. Stat. Phys. 84:899–925.

    Google Scholar 

  17. F. Bonetto and G. Gallavotti, Reversibility, coarse graining and the chaoticity principle, preprint (1996).

  18. F. Bonetto, N. Chernov, and J. L. Lebowitz, In preparation.

  19. W. T. Ashurst and W. G. Hoover,Phys. Rev. A 11:658 (1975); J. Koplik, J. R. Banavar, and J. F. Willemson,Phys. Rev. Lett. 60:1282 (1988); L. Hannon, G. C. Lie, and E. Clementi,J. Stat. Phys. 51:965 (1988); D. Rapaport,Phys. Rev. Lett. 60:2480 (1988);Phys. Fluids A 1:781 (1989);Phys. Rev. A 46:1971 (1992);Transport Theory Stat. Phys. 23:235 (1994).

    Google Scholar 

  20. N. Chernov and J. L. Lebowitz, Stationary shear flow in boundary driven Hamiltonian systems,Phys. Rev. Lett. 75:2831–2834 (1995).

    Google Scholar 

  21. L.-S. Young, Dimension, entropy and Lyapunov exponents,Ergod. Theory Dynam. Syst. 2:109–124 (1982).

    Google Scholar 

  22. Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions,J. Stat. Phys. 71:529–547 (1993).

    Google Scholar 

  23. D. Ruelle. Positivity of entropy production in nonequilibrium statistical mechanics,J. Stat. Phys., to appear (October 1996); see also G. Gentile, Large deviation rule for Anosov flows, IHES preprint (1996).

  24. R. Esposito, J. L. Lebowitz, and R. Marra, Hydrodynamic limit of the stationary Boltzmann.equation in a slab,Commun. Math. Phys. 160:49 (1994).

    Google Scholar 

  25. J. L. Lebowitz,Physica A 194:1 (1993); Boltzmann's entropy and time's arrow,Phys. Today 46:32–38;47:113–116 (1993); Microscopic reversibility and macroscopic behavior: Physical explanations and mathematical derivations, in25 Years of Non-Equilibrium Statistical Mechanics, J. J. Brey, J. Marro, J. M. Rubi, and M. San Miguel, eds. (Springer, New York, 1995).

    Google Scholar 

  26. F. Alexander, Private communication.

  27. C. Cercignani,Mathematical Methods in Kinetic Theory (Plenum Press, New York, 1990).

    Google Scholar 

  28. G. Gallavotti and P. Garrido, Billiards correlation functions,J. Stat. Phys. 76:549–585 (1994); O. E. Lanford, Some informal remarks on the orbit structure of discrete approximations to chaotic maps, preprint, ETH, Zurich (1996).

    Google Scholar 

  29. R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  30. T. Krüger and S. Troubetzkoy, Markov partitions and shadowing for nonuniformly hyperbolic systems with singularities,Ergod. Theory Dynam. Syst. 12:487–508 (1992).

    Google Scholar 

  31. D. Gass, Enskog theory for a rigid disk fluid,J. Chem. Phys. 54:1898–1902 (1971); D. Risso and P. Cordero,J. Stat. Phys. 82:1453–1466 (1996).

    Google Scholar 

  32. J. Erpenbeck and W. Wood, Molecular-dynamics calculations of the velocity autocorrelation function. Methods, hard disk results,Phys. Rev. A 26:1648–1675 (1982).

    Google Scholar 

  33. F. Ree and W. Hoover, Fifth and sixth virial cofficients for hard spheres and hard disks,J. Chem. Phys. 40:939–950 (1964); E. Helfand, H. Frisch, and J. L. Lebowitz, Theory of two- and one-dimensional rigid sphere fluids,J. Chem. Phys. 34:1037 (1960).

    Google Scholar 

  34. S. Olla, S. R. S. Varadhan, and H. T. Yau, Hydrodynamic limit for a Hamiltonian system with weak noise,Commun. Math. Phys. 155:523–560 (1993); Y. G. Sinai,Selecta Math. Sov. 7:279 (1988).

    Google Scholar 

  35. D. N. Zubarev,Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974); J. A. McLennan,Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1989); G. L. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics and fluctuations outside of local equilibrium: Driven diffusive systems,J. Stat. Phys. 83:385–472 (1996).

    Google Scholar 

  36. I. Newton,The Mathematical Principles of Natural Philisophy, Book II, Section VIII, Proposition XLVIII, Theorem XXXVIII, p. 305.

  37. R. Lupton,Statistics in Theory and Practice (Princeton University Press, Princeton, New Jersey, 1993).

    Google Scholar 

  38. Ch. Dellago and H. A. Posch, Lyapunov instability of the boundary driven Chernov-Lebowitz model for stationary shear flow, University of Vienna, preprint (May 1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, N.I., Lebowitz, J.L. Stationary nonequilibrium states in boundary-driven Hamiltonian systems: Shear flow. J Stat Phys 86, 953–990 (1997). https://doi.org/10.1007/BF02183610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183610

Key Words

Navigation