Skip to main content
Log in

On the mean free path for a periodic array of spherical obstacles

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove theorems pertaining to periodic arrays of spherical, obstacles which show how the macroscopic limit of the mean free path depends on the scaling of the size of the obstacles. We treat separately the cases where the obstacles are totally and partially absorbing, and we also distinguish between two-dimensional arrays, where our results are optimal, and higher dimensional arrays, where they are not. The cubically symmetric arrays to which these results apply do not have finite horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexandre and K. Hamdache, Homogénéisation d'équations cinétiques en milieu perforé,C. R. Acad. Sci. 313:339–344 (1991).

    Google Scholar 

  2. V. I. Arnold,Geometrical Methods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York, 1983).

    Google Scholar 

  3. C. Boldigrini, L. A. Bunimovich, and Ya. G. Sinai, On the Boltzmann Equation for the Lorentz gas,J. Stat. Phys. 32(3):477–501 (1983).

    Google Scholar 

  4. L. A. Bunimovich and Ya. G. Sinai, Markov partitions of dispersed billiards.,Commun. Math. Phys. 73:247–280 (1980); Statistical properties of the Lorentz gas with periodic configurations of scatterers,Commun. Math. Phys. 78:479–497 (1981).

    Google Scholar 

  5. L. A. Bunimovich, Ya. G. Sinai, and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards,Russ. Math. Surv. 45(3):105–152 (1990); Statistical properties of two-dimensional hyperbolic billiards,Russ. Math. Surv. 46(4):47–106 (1991).

    Google Scholar 

  6. J. W. S. Cassels,An Introduction to Diophantine Approximation (Cambridge University Press, Cambridge, 1957).

    Google Scholar 

  7. M. Cessenat, Théorèmes de traceL p pour les espaces de fonctions de la neutronique,C.R. Acad. Sci. 300:89–92 (1985).

    Google Scholar 

  8. H. S. Dumas, Ergodization rates for linear flow on the torus,J. Dynam. Diff. Equations 3:593–610 (1991).

    Google Scholar 

  9. G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972).

  10. F. Golse, Transport dans les milieux composites fortement contrastés I: Le modèle du billard,Ann. Inst. Henri Poincaré 61:381–410 (1994).

    Google Scholar 

  11. R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in a vacuum,Commun. Math. Phys. 105:189–203 (1986).

    Google Scholar 

  12. O. E. Lanford III, Time evolution of large classical systems, inDynamical Systems, Theory and Applications J. Moser, ed. (Springer-Verlag, New York, 1975), pp. 1–111.

    Google Scholar 

  13. M. Pulvirenti, Global validity of the Boltzmann equation for a three-dimensional rare gas in a vacuum,Commun. Math. Phys. 113:79–85 (1987).

    Google Scholar 

  14. W. M. Schmidt,Diophantine Approximation (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  15. L. Schwartz,Théorie des distributions (Hermann, Paris, 1966).

    Google Scholar 

  16. H. Spohn, The Lorentz flight process converges to a random flight process,Commun. Math. Phys. 60:277–290 (1978).

    Google Scholar 

  17. P. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon,J. Stat. Phys. 66:315–373 (1992).

    Google Scholar 

  18. J. Bourgain, F. Golse, and B. Wennberg, In preparation.

  19. L. A. Bunimovich, Decay of correlations in dynamical systems with chaotic behavior,Sov. Phys. JETP 62:842–852 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, H.S., Dumas, L. & Golse, F. On the mean free path for a periodic array of spherical obstacles. J Stat Phys 82, 1385–1407 (1996). https://doi.org/10.1007/BF02183388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183388

Key Words

Navigation