Skip to main content
Log in

The computational complexity of generating random fractals

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine a number of models that generate random fractals. The models are studied using the tools of computational complexity theory from the perspective of parallel computation. Diffusion-limited aggregation and several widely used algorithms for equilibrating the Ising model are shown to be highly sequential; it is unlikely they can be simulated efficiently in parallel. This is in contrast to Mandelbrot percolation, which can be simulated in constant parallel time. Our research helps shed light on the intrinsic complexity of these models relative to each other and to different growth processes that have been recently studied using complexity theory. In addition, the results may serve as a guide to simulation physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, How to define complexity in physics, and why, inComplexity, Entropy and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, Reading, Massachusetts, 1990).

    Google Scholar 

  2. B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1983).

    Google Scholar 

  3. J. T. Chayes, L. Chayes, and R. Durrett, Connectivity properties of Mandelbrot's percolation process,Prob. Theory Related Fields 77:307 (1988).

    Google Scholar 

  4. T. A. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon,Phys. Rev. Lett. 47:1400 (1981).

    Google Scholar 

  5. J. Machta, The computational complexity of pattern formation.J. Stat. Phys. 170:949 (1993).

    Google Scholar 

  6. J. Machta and R. Greenlaw, The parallel complexity of growth models,J. Stat. Phys. 77:755 (1994).

    Google Scholar 

  7. F. Barahona, On the computational complexity of Ising spin glass models,J. Phys. A: Math. Gen. 15:3241 (1982).

    Google Scholar 

  8. J. Machta, The computational complexity of the self-avoiding walk on random lattices,J. Phys. A: Math. Gen. 25:521 (1992).

    Google Scholar 

  9. J. C. Angles d'Auriac, M. Preissmann, and R. Rammal, The random field Ising model: Algorithmic complexity and phase transitions.J. Phys. (Paris)46:L173 (1985).

    Google Scholar 

  10. D. J. A. Welsh, The computational complexity of some classical problems from statistical physics, inDisorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds. (Oxford University Press, Oxford, 1990), p. 307.

    Google Scholar 

  11. M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising model,SIAM J. Computing 22(5):1087 (1993).

    Google Scholar 

  12. J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation Addison-Wesley, Reading, Massachusetts, (1979).

    Google Scholar 

  13. H. R. Lewis and C. H. Papadimitriou,Elements of the Theory of Computation (Prentice-Hall, Englewood Cliffs, New Jersey, 1981).

    Google Scholar 

  14. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo,Limits to Parallel Computation: P-Completeness Theory (Oxford University Press, Oxford, 1995).

    Google Scholar 

  15. D. S. Johnson, A catalog of complexity classes, inHandbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwman, ed. (MIT Press/Elsevier, 1990), p. 68.

  16. M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).

    Google Scholar 

  17. A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, Massachusetts, 1974).

    Google Scholar 

  18. F. E. Fich, The complexity of computation on the parallel random access machine, inSynthesis of Parallel Algorithms, J. H. Reif, ed. (Morgan Kaufman, San Mateo, California, 1993), Chapter 20, pp. 843–899.

    Google Scholar 

  19. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, inHandbook of Theoretical Computer Science, volume A: Algorithms and Complexity, Jan van Leeuwman, ed. (MIT Press/Elsevier, 1990), Chapter 17, pp. 869–941.

  20. R. E. Ladner, The circuit value problem is log space complete for P,SIGACT News 7:18 (1975).

    Google Scholar 

  21. E. Fredkin and T. Toffoli, Conservative logic,Int. J. Theor. Phys. 21:219 (1982).

    Google Scholar 

  22. J. Von Neumann,Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, 1966).

    Google Scholar 

  23. J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V. Chayes. Invaded cluster algorithm for equilibrium critical points,Phys. Rev. Lett. 75:2792 (1995).

    Google Scholar 

  24. H. Venkateswaran, Circuit definitions of nondeterministic complexity classes,SIAM J. Computing 21:655 (1992).

    Google Scholar 

  25. J. Machta, Phase transitions in fractal porous media,Phys. Rev. Lett. 66:169 (1991).

    Google Scholar 

  26. J. T. Chayes, L. Chayes, and J. Machta, Phase diagram and correlation length bounds for Mandelbrot aerogels,J. Phys. A: Math. Gen. 26:4249 (1993).

    Google Scholar 

  27. L. Chayes and J. Machta, On the behavior of the surface tension for spin-systems in a correlated porous medium,J. Stat. Phys. 79:117 (1995).

    Google Scholar 

  28. U. Wolff, Collective Monte Carlo updating for spin systems,Phys. Rev. Lett. 62:361 (1989).

    Google Scholar 

  29. R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations,Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  30. M. E. Fisher, The theory of condensation and the critical point,Physics 3:255 (1967).

    Google Scholar 

  31. C. M. Fortuin and P. M. Kasteleyn, On the random-cluster model,Physica 57:536 (1972).

    Google Scholar 

  32. A. Coniglio and W. Klein, Clusters and Ising critical droplets: A renormalisation group approach,J Phys. A: Math. Gen. 13:2775 (1980).

    Google Scholar 

  33. A. Gibbons and W. Rytter,Efficient Parallel Algorithms (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  34. L. A. Levin, Average case complete problems,SIAM J. Computing 15:285 (1986).

    Google Scholar 

  35. S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case complexity,J. Computer Syst. Sc. 44:193 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machta, J., Greenlaw, R. The computational complexity of generating random fractals. J Stat Phys 82, 1299–1326 (1996). https://doi.org/10.1007/BF02183384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183384

Key Words

Navigation