Skip to main content
Log in

An alternative approach to electrochemistry

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The concepts used conventionally in electrochemistry, single-ion chemical potential and electrostatic potential difference, are not obtainable from measurements in an inhomogeneous system. The use of nonoperational and mutually dependent forces in flux equations has impeded our understanding of electrochemical processes, and has led to wrong conclusions. The equation for entropy production is derived using only operationally defined quantities, chemical potentials of neutral components and the electric potential measured with reversible electrodes. The electric potential enters calculations as external electric work in the first law of thermodynamics. From entropy production, flux equations are obtained where the forces are operationally defined, measurable quantities. Three different problems from electrochemistry are discussed, the liquid junction potential, the Donnan potential, and energy coversion in mitochondria. The conventional method of calculations and the operational method are compared. The operational method permits more detailed calculations of emf, and an understanding of the process from a different approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Førland, T. Førland, and S. K. Ratkje,Irreversible Thermodynamics, Theory and Applications (Wiley, Chichester, 1988).

    Google Scholar 

  2. K. S. Førland, T. Førland, and S. K. Ratkje, Transport processes in electrolytes and membranes inFlow, Diffusion and Rate Processes, S. Sieniutycz and P. Salamon, eds. (Taylor & Francis, New York, 1992).

    Google Scholar 

  3. K. S. Førland and T. Førland, The calculation of emf for cells with irreversible transport, inProceedings of the 5th Symposium on Ion-Selective Electrodes in Mátrafüred (Pergamon Press, Oxford, 1989), pp. 357–366.

    Google Scholar 

  4. L. Onsager, Reciprocal relations in irreversible processes, I,Phys. Rev. 37:405–426 (1931).

    Google Scholar 

  5. L. Onsager, Reciprocal relations in irreversible processes, II,Phys. Rev. 38:2265–2279 (1931).

    Google Scholar 

  6. D. G. Miller, Thermodynamics of irreversible processes,Chem. Rev. 60:15–37 (1960).

    Google Scholar 

  7. S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969), Chapter III, §3.

    Google Scholar 

  8. A. Katchalsky and P. F. Curran,Non-Equilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge, 1965), Chapter 7.3.

    Google Scholar 

  9. E. A. Guggenheim, The conceptions of electrical potential differences between two phases and the individual activities of ions,J. Phys. Chem. 33:842–849 (1929).

    Google Scholar 

  10. L. Onsager and R. M. Fuoss, Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes,J. Phys. Chem. 36:2689–2778 (1932).

    Google Scholar 

  11. A. K. Covington, Recent developments in pH standardisation and measurement for dilute aqueous solutions,Anal. Chim. Acta 127:1–21 (1981).

    Google Scholar 

  12. A. W. Adamson,A Textbook in Physical Chemistry (Academic Press, New York, 1979), Chapter 13-ST-1.

    Google Scholar 

  13. E. E. Johnsen, S. K. Ratkje, T. Førland, and K. S. Førland, The liquid junction contribution to emf,Z. Phys. Chem. N. F. 169:101–114 (1990).

    Google Scholar 

  14. J. Breer, S. K. Ratkje, and G.-F. Olsen, Control of liquid junctions,Z. Phys. Chem. 174:179–198 (1991).

    Google Scholar 

  15. M. Alonso and E. J. Finn,Fundamental Physics, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1983), Vol. II, Chapter 2.9.

    Google Scholar 

  16. T. Førland, The diffusion process and the potential in relation to the emf of concentration cells,Acta Chem. Scand. 14:1381–1388 (1960).

    Google Scholar 

  17. T. Førland and S. K. Ratkje, Small contributions to emf from changes in electrostatic potentials,Electrochim. Acta 26:649–652 (1981).

    Google Scholar 

  18. T. Førland and T. Østvold, The Donnan potential. I,Acta Chem. Scand. A 28:607–611 (1974).

    Google Scholar 

  19. P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type mechanism,Nature 191:144–148 (1961).

    Google Scholar 

  20. T. Førland, S. K. Ratkje, and K. S. Førland, The phosphorylation process in mitochondria. Proton motive force and electric potential,Comments Mol. Cell. Biophys. 7:57–77 (1991).

    Google Scholar 

  21. H. Rottenberg and M. Gutman, Control of the rate of reverse electron transport in submitochondrial particles by the free energy,Biochemistry 16:3220–3227 (1977).

    Google Scholar 

  22. J. Sakamoto and Y. Tonomura, Synthesis of enzyme-bound ATP by mitochondrial soluble F1-ATPase in presence of dimethylsulphoxide,J. Biochem. 93:1601–1614 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Førland, K.S., Førland, T. An alternative approach to electrochemistry. J Stat Phys 78, 513–529 (1995). https://doi.org/10.1007/BF02183362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183362

Key Words

Navigation