Skip to main content
Log in

Criteria for local equilibrium in a system with transport of heat and mass

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Nonequilibrium molecular dynamics is used to compute the coupled heat and mass transport in a binary isotope mixture of particles interacting with a Lennard-Jones/spline potential. Two different stationary states are studied, one with a fixed internal energy flux and zero mass flux, and the other with a fixed diffusive mass flux and zero temperature gradient. Computations are made for one overall temperature,T=2, and three overall number densities,n=0.1, 0.2, and 0.4. (All numerical values are given in reduced, Lennard-Jones units unless otherwise stated.) Temperature gradients are up to ∇T=0.09 and weight-fraction gradients up to ∇w 1=0.007. The flux-force relationships are found to be linear over the entire range. All four transport coefficients (theL-matrix) are determined and the Onsager reciprocal relationship for the off-diagonal coefficients is verified. Four different criteria are used to analyze the concept of local equilibrium in the nonequilibrium system. The local temperature fluctuation is found to be δT≈0.03T and of the same order as the maximum temperature difference across the control volume, except near the cold boundary. A comparison of the local potential energy, enthalpy, and pressure with the corresponding equilibrium values at the same temperature, density, and composition also verifies that local equilibrium is established, except near the boundaries of the system. The velocity contribution to the BoltzmannH-function agrees with its Maxwellian (equilibrium) value within 1%, except near the boundaries, where the deviation is up to 4%. Our results do not support the Eyring-type transport theory involving jumps across energy barriers; we find that its estimates for the heat and mass fluxes are wrong by at least one order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Reciprocal relations in irreversible processes. I,Phys. Rev. 37:405–426 (1931).

    Google Scholar 

  2. R. M. Velasco and L. S. Garcia-Colin, The kinetic foundations of non-local non-equilibrium thermodynamics,J. Non-Equilib. Thermodyn. 18 (1993), in press.

  3. K. Olah, Thermokinetics (an introduction),Periodica Polytechnica Chem. Eng. 31:19–27 (1987).

    Google Scholar 

  4. K. Olah, Thermostatics, thermodynamics, and thermokinetics,Acta. Chim. Hung. 125:117–130 (1988).

    Google Scholar 

  5. A. Tenenbaum, G. Ciccotti, and R. Gallico, Stationary nonequilibrium states by molecular dynamics. Fourier's law,Phys. Rev. A 25:2778–2787 (1982).

    Google Scholar 

  6. D. MacGowan and D. J. Evans, Heat and matter transport in binary liquid mixtures.Phys. Rev. A 34:2133–2142 (1986); see also D. J. Evans and D. MacGowan, Addendum to “Heat and matter transport in binary liquid mixtures,”Phys. Rev. A 36:948 (1987).

    Google Scholar 

  7. G. V. Paolini and G. Ciccotti, Cross thermotransport in liquid mixtures by non-equilibrium molecular dynamics,Phys. Rev. A 35:5156–5166 (1987).

    Google Scholar 

  8. H. J. Kreuzer,Nonequilibrium Thermodynamics and its Statistical Foundations (Clarendon, Oxford, 1981).

    Google Scholar 

  9. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse,Z. Phys. Chem. B 53:235–263 (1941).

    Google Scholar 

  10. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse in Gasen mit chemisch reagierenden, dissozierenden und anregbaren Komponenten,Ann. Phys. (Leipzig)43:244–270 (1943).

    Google Scholar 

  11. J. M. Haile,Molecular Dynamics Simulations. Elementary Methods (Wiley, New York, 1992).

    Google Scholar 

  12. J. Orban and A. Bellemans, Velocity-inversion and irreversibility in a dilute gas of hard disks,Phys. Lett. 24A:620–621 (1967).

    Google Scholar 

  13. H. Eyring and E. Eyring,Modern Chemical Kinetics (Rheinhold, New York, 1963).

    Google Scholar 

  14. J. Goodisman,Electrochemistry: Theoretical Foundations (Wiley-Interscience, New York, 1987).

    Google Scholar 

  15. K. S. Førland, T. Førland, and S. K. Ratkje,Irreversible Thermodynamics. Theory and Applications (Wiley, Chichester, England, 1988).

    Google Scholar 

  16. T. L. Hill, On the one-dimensional steady-state Ising problem,J. Chem. Phys. 76:1122–1127 (1982).

    Google Scholar 

  17. S. R. Caplan and A. Essig,Bioenergetics and Linear Nonequilibrium Thermodynamics. The Steady State (Harvard University Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  18. K. D. Garlid, A. D. Beavis, and S. K. Ratkje, On the nature of ion leaks in energy-transducing membranes.Biochim. Biophys. Acta 976:109–120 (1989).

    Google Scholar 

  19. T. Ikeshoji and B. Hafskjold, Nonequilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface,Mol. Phys. (1993), in press.

  20. B. Hafskjold, T. Ikeshoji, and S. K. Ratkje, On the molecular mechanism of thermal diffusion in liquids,Mol. Phys. (1993), in press.

  21. R. Haase,Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, Massachusetts, 1969).

    Google Scholar 

  22. D. J. Evans and G. P. Morriss,Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  23. P. Sindzingre, C. Massobrio, and G. Ciccotti, Calculation of partial enthalpies of an argon-krypton mixture byNPT molecular dynamics,Chem. Phys. 129:213–224 (1989).

    Google Scholar 

  24. B. L. Holian and D. J. Evans, Shear viscosities away from the melting line: A comparison of equilibrium and nonequilibrium molecular dynamics,J. Chem. Phys. 78:5147 (1983).

    Google Scholar 

  25. J. M. Kincaid, X. Li, and B. Hafskjold, Nonequilibrium molecular dynamics calculation of the thermal diffusion factor,Fluid Phase Equilib. 76:113 (1992).

    Google Scholar 

  26. J. M. Kincaid and B. Hafskjold, Thermal diffusion factors for the Lennard-Jones/spline system,Mol. Phys., submitted.

  27. T. Ikeshoji, private communication.

  28. X. Li, Ion transport in solid electrolytes studied by molecular dynamics simulations, Ph.D. Thesis no. 57, University of Trondheim, The Norwegian Institute of Technology.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafskjold, B., Ratkje, S.K. Criteria for local equilibrium in a system with transport of heat and mass. J Stat Phys 78, 463–494 (1995). https://doi.org/10.1007/BF02183360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183360

Key Words

Navigation