Skip to main content
Log in

Microscopic reversibility and the nonlinear Einstein-Onsager relation in macroscopic description of nucleation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the possibility of describing fluctuational decay of a metastable phase macroscopically, without a detailed knowledge of the microscopic kinetics. Using the ideas of microscopic reversibility, we construct a hydrodynamic-type equation which describes the buildup of fluctuations in the region of subcritical sizes. An equation of Ornstein-Uhlenbeck type is used to bridge this equation with the one describing unstable growth of larger (overcritical) fluctuations. An explicit time-dependent solution to the proposed system of equations is derived in the spirit of the singular perturbation technique. It is shown that this solution also accurately approximates the solution of the Farkas-Becker-Döring master equation, so that the macroscopic level of description is consistent with the underlying models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Lebowitz,Physica A 194:1 (1993).

    Google Scholar 

  2. L. Onsager,Phys. Rev. 37:405 (1931);38:2265 (1931).

    Google Scholar 

  3. L. Onsager and S. Machlup,Phys. Rev. 91:1505 (1953).

    Google Scholar 

  4. G. L. Eyink,J. Stat. Phys. 61:553 (1990).

    Google Scholar 

  5. L. Farkas,Z. Phys. Chem. 125:236 (1927); R. Becker and W. Döring,Ann. Phys. 23:719 (1935).

    Google Scholar 

  6. Ya. Zeldovich,Acta Phys. Chem. USSR 18:1 (1943).

    Google Scholar 

  7. H. Kramers,Physica 7:284 (1940); J. Moyal,J. R. Stat. Soc. 11:151 (1949).

    Google Scholar 

  8. N. G. van Kampen,Stochastic Processes in Physics and Chemistry, rev. ed. (Elsevier, Amsterdam, 1992), Chapter 10.

    Google Scholar 

  9. N. G. van Kampen,Can. J. Phys. 39:551 (1961).

    Google Scholar 

  10. P. Hänggi, H. Grabert, P. Talkner, and H. Thomas,Phys. Rev. A 29:371 (1984).

    Google Scholar 

  11. V. Shneidman and P. Hänggi,Phys. Rev. E 49:894 (1994).

    Google Scholar 

  12. V. Shneidman,Sov. Phys. Tech. Phys. 32:76 (1987).

    Google Scholar 

  13. V. Shneidman,Phys. Lett. 143:275 (1990).

    Google Scholar 

  14. M. Abramowitz and I. Stegun,Handbook for Mathematical Functions (Dover, New York, 1965), Chapter 7.

    Google Scholar 

  15. V. Shneidman,Sov. Phys. Tech. Phys. 33:1338 (1988).

    Google Scholar 

  16. M. E. Fisher,Physics 3:255 (1967).

    Google Scholar 

  17. J. Lothe and G. Pound,J. Chem. Phys. 36:2080 (1962).

    Google Scholar 

  18. O. Penrose and J. Lebowitz, inStudies in Statistical Mechanics, Vol. VII.Fluctuation Phenomena, E. Montroll and J. Lebowitz, eds. (North-Holland, Amsterdam, 1979); J. Ball, J. Carr, and O. Penrose,Commun. Math. Phys. 104:657 (1986).

    Google Scholar 

  19. P. Hänggi,Phys. Rev. A 25:1130 (1982).

    Google Scholar 

  20. V. Shneidman and M. Weinberg,J. Chem. Phys. 97:3629 (1992).

    Google Scholar 

  21. P. James,Phys. Chem. Glasses 15:95 (1974); V. Fokin, A. Kalinina, and V. Filipovich,Fiz. Khim. Stekla 6:148 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shneidman, V.A., Hänggi, P. Microscopic reversibility and the nonlinear Einstein-Onsager relation in macroscopic description of nucleation. J Stat Phys 78, 431–439 (1995). https://doi.org/10.1007/BF02183357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183357

Key Words

Navigation