Skip to main content
Log in

Criticality and phase transitions in ionic fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recent experimental investigations of criticality and phase separation in ionic fluids have revealed behavior of great theoretical interest. In seeking to understand the experiments, some of which appear to exhibit argonlike criticality and some of which exhibit “classical” (mean-field) criticality, a convenient starting point is the restricted primitive model (RPM) of symmetrically charged hard spheres, all of equal diameter σ, each sphere bearing a positive or negative charge of magnitudeq. There is overall charge neutrality, so that the expected number densities of the anions and cations are equal,ρ +=ρ -. Studies of RPM charge-charge and density-density correlation functions indicate that the fluctuation-suppressing mechanism that yields mean-field critical behavior in nonionic systems with long-range interparticle potentials is not operative in the RPM. On the basis of plausible assumptions, Ising-like behavior is instead expected. The above work is summarized. New work of Zhang and the author is outlined, showing that when one loses the RPM symmetry (through, e.g., different valence, diameter, or dipole moment of anions and cations) a strong coupling between charge-charge and density-density correlation ensues. The way in which this can be expected to give rise to mean-field or mean-field-like behavior is noted. Other new observations concern the mean-field analogy found by Høye and the author between the parameter 2/(d−2) (d is the dimensionality) in that model and the monomer number in high polymers, with respect to the coexistence-curve shape dependence on those parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Singh and K. S. Pitzer,J. Am. Chem. Soc. 110:8723 (1988).

    Google Scholar 

  2. R. R. Singh and K. S. Pitzer,J. Chem. Phys. 92:6775 (1990).

    Google Scholar 

  3. M. L. Japas and J. M. H. Levelt Sengers,J. Phys. Chem. 94:5361 (1990).

    Google Scholar 

  4. K. S. Pitzer,Acct. Chem. Res. 23:333 (1990).

    Google Scholar 

  5. H. Weingärtner, T. Merkel, U. Maurer, J.-P. Conzen, H. Glasbrenner, and S. Käshammer,Ber. Buns. Phys. Chem. 95:1579 (1991).

    Google Scholar 

  6. H. Weingärtner, S. Wiegand, and W. Schröer,J. Chem. Phys. 96:848 (1992).

    Google Scholar 

  7. K. C. Zhang, M. E. Briggs, R. W. Gammon, and J. M. J. Levelt Sengers,J. Chem. Phys. 97:8692 (1992).

    Google Scholar 

  8. J. M. H. Levelt Sengers and J. A. Given,Mol. Phys. 80:899 (1993).

    Google Scholar 

  9. J. P. Valleau,J. Chem. Phys. 95:584 (1991).

    Google Scholar 

  10. A. Z. Panagiotopoulos,Fluid Phase Equilib. 76:97 (1992).

    Google Scholar 

  11. G. Orkoulas and A. Z. Panagiotopoulos,J. Chem. Phys. 101:1452 (1994).

    Google Scholar 

  12. J. L. Caillol,J. Chem. Phys. 100:2161 (1994).

    Google Scholar 

  13. B. Widom and J. S. Rowlinson,J. Chem. Phys. 52:1670 (1970); D. Ruelle,Phys. Rev. Lett. 27:1040 (1971).

    Google Scholar 

  14. H. Xu, H. L. Friedman, and F. O. Raineri,J. Solution Chem. 20:739 (1991).

    Google Scholar 

  15. J. S. Høye and G. Stell, SUSB College of Engineering and Applied Sciences Report 679 (1993); J. S. Høye and G. Stell,J. Stat. Phys. 78:1171 (1995);J. Chem. Phys., in press.

  16. D. Wei and G. N. Patey,Phys. Rev. Lett. 68:2043 (1992).

    Google Scholar 

  17. D. Wei and G. N. Patey,Phys. Rev. A 46:7783 (1992).

    Google Scholar 

  18. J. J. Weiset al., Phys. Rev. Lett. 69:913 (1992).

    Google Scholar 

  19. J. J. Weis and D. Levesque,Phys. Rev. E 48:3728 (1993).

    Google Scholar 

  20. E. Lomba et al.,Phys. Rev. E 49:5169 (1994); E. Lomba, J. J. Weis, and G. Stell,Phys. Rev. E, in press.

    Google Scholar 

  21. D. A. McQuarrie,J. Phys. Chem. 66:1508 (1962).

    Google Scholar 

  22. H. L. Friedman,J. Phys. Chem. 66:1595 (1962).

    Google Scholar 

  23. F. H. Stillinger, Jr., and R. Lovett,J. Chem. Phys. 48:3858 (1968).

    Google Scholar 

  24. F. H. Stillinger, J. G. Kirkwood, and P. J. Wojtowicz,J. Chem. Phys. 32:1837 (1960).

    Google Scholar 

  25. F. H. Stillinger, Equilibrium theory of pure fused salts, InMolten Salt Chemistry, Milton Blander, ed. (Interscience, New York, 1964).

    Google Scholar 

  26. P. N. Vorontsov-Veliaminov, A. M. El'yashevich, L. A. Morgenshtern, and V. P. Chasovshikh,Teplofiz. Vys. Temp. 8:277 (1970) [High Temp. (USSR) 8:261 (1970)].

    Google Scholar 

  27. V. P. Chasovshikh, P. N. Vorontsov-Veliaminov, and A. M. El'yashevich,Dokl. Akad. Nauk Tadzhiksko SSR 16(10):23 (1973).

    Google Scholar 

  28. V. P. Chasovshikh and P. N. Vorontsov-Veliaminov,Teplofiz. Vys. Temp. 14:199 (1976) [High Temp. (USSR) 14:174 (1976)].

    Google Scholar 

  29. G. R. Stell, K. C. Wu, and B. Larsen,Phys. Rev. Lett. 37:1369 (1976).

    Google Scholar 

  30. G. Stell and J. L. Lebowitz,J. Chem. Phys. 49:3706 (1968).

    Google Scholar 

  31. G. Stell and K. C. Wu,J. Chem. Phys. 63:491 (1975).

    Google Scholar 

  32. J. C. Rasaiah, B. Larsen, and G. Stell,Mol. Phys. 33:987 (1977).

    Google Scholar 

  33. G. Stell, Fluids with long-range forces: Toward a simple analytic theory, InModern Theoretical Chemistry, Vol. 5A:Statistical Mechanics, Bruce Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  34. E. Waisman and J. L. Lebowitz,J. Chem. Phys. 56:3086 (1972).

    Google Scholar 

  35. J. L. Lebowitz and J. K. Percus,Phys. Rev. 144:251 (1966).

    Google Scholar 

  36. G. Stell and B. Larsen,J. Chem. Phys. 70:361 (1979); see also E. W. Montroll and J. L. Lebowitz, eds.,Studies in Statistical Mechanics, Fluids Volume (North-Holland, Amsterdam, 1982).

    Google Scholar 

  37. M. E. Fisher,J. Stat. Phys. 75:1 (1994).

    Google Scholar 

  38. N. Bjerrum,Kgl. Danske Vidensk. Selsk. Mat.-Fys. Medd. 7:1 (1926).

    Google Scholar 

  39. H. L. Friedman and B. Larsen,J. Chem. Phys. 70:92 (1979).

    Google Scholar 

  40. W. Ebeling,Z. Phys. Chem. (Leipzig)247:340 (1971).

    Google Scholar 

  41. W. Ebeling and M. Grigo,Ann. Phys. (Leipzig)37:21 (1980).

    Google Scholar 

  42. M. J. Gillan,Mol. Phys. 49:421 (1983).

    Google Scholar 

  43. A. Tani and D. Henderson,J. Chem. Phys. 79:2390 (1983).

    Google Scholar 

  44. K. S. Pitzer and D. R. Schreiber,Mol. Phys. 60:1067 (1987).

    Google Scholar 

  45. J. A. Given and G. Stell,J. Chem. Phys. 96:9233 (1992).

    Google Scholar 

  46. M. E. Fisher and Y. Levin,Phys. Rev. Lett. 71:3826 (1993).

    Google Scholar 

  47. J. S. Høye and K. Olaussen,Physica 104A:435, 447 (1980);107A:241 (1981).

    Google Scholar 

  48. V. McGahay and M. Tomozawa,J. Noncryst. Solids 109:27 (1989).

    Google Scholar 

  49. V. McGahay and M. Tomozawa,J. Chem. Phys. 97:2609 (1992).

    Google Scholar 

  50. M.-C. Justice and J.-C. Justice,J. Solution Chem. 5:543 (1976);6:819 (1977).

    Google Scholar 

  51. P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953), Chapters 12 and 13.

    Google Scholar 

  52. P.-G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979), especially Section IV.3.

    Google Scholar 

  53. G. Stell,Phys. Rev. A 45:7628 (1992).

    Google Scholar 

  54. G. Stell,Phys. Rev. B 1:2265 (1970).

    Google Scholar 

  55. G. Stell,Phys. Rev. Lett. 20:533 (1968).

    Google Scholar 

  56. G. Stell, Correlation functions and their generating functionals, InPhase Transitions and Critical Phenomena, Vol. 5B, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  57. Q. Zhang and J. P. Badiali,Phys. Rev. Lett. 67:1598 (1991);Phys. Rev. A 45:8666 (1992).

    Google Scholar 

  58. B. Larsen,Kgl. Norske Vidensk. Selsk. 2:1 (1979).

    Google Scholar 

  59. C. W. Outhwaite, Equilibrium theory of electrolyte solutions, InSpecialist Periodical Reports: Statistical Mechanics, Vol. 2, K. Singer, ed. (Chemical Society, London, 1975).

    Google Scholar 

  60. R. Lovett and F. H. Stillinger,J. Chem. Phys. 48:3869 (1968).

    Google Scholar 

  61. G. Stell, SUSB College of Engineering and Applied Sciences Report 608 (August 1991).

  62. A. Kholodenko and A. L. Beyerlein,Phys. Lett. A 175:366 (1993).

    Google Scholar 

  63. J. M. Kosterlitz,J. Phys. Chem. 10:3753 (1977).

    Google Scholar 

  64. Y. Zhou and G. Stell,J. Chem. Phys. 92:5533, 5544 (1990).

    Google Scholar 

  65. F. H. Stillinger and R. Lovett,J. Chem. Phys. 49:1991 (1968).

    Google Scholar 

  66. M. E. Fisher and R. J. Burford,Phys. Rev. 159:583 (1967).

    Google Scholar 

  67. G. Stell,Phys. Rev. Lett. 32:286 (1974).

    Google Scholar 

  68. J. M. H. Levelt Sengers and S. C. Greer,J. Heat Mass Transfer 15:1865 (1974); see also J. V. Sengers and J. M. H. Levelt Sengers,Ann. Res. Phys. Chem. 37:189 (1986), and references therein.

    Google Scholar 

  69. G. Stell, J. C. Rasaiah, and H. Narang,Mol. Phys. 23:393 (1972)27:1393 (1974).

    Google Scholar 

  70. R. Hocken and G. Stell,Phys. Rev. A 8:887 (1973).

    Google Scholar 

  71. G. Stell and J. S. Høye,Phys. Rev. Lett. 33:1268 (1974).

    Google Scholar 

  72. D. Bedeaux and P. Mazur,Physica 67:23 (1973).

    Google Scholar 

  73. J. V. Sengers, D. Bedeaux, P. Mazur, and S. C. Greer,Physica 104A:573 (1980).

    Google Scholar 

  74. V. M. Nabutovskii, N. A. Nemov, and Yu. G. Peisakhovich,Sov. Phys. JETP 52:1111 (1980) [Zh. Eksp. Teor. Fiz. 79:2196 (1980);Phys. Lett. 79A:98 (1980);Mol. Phys. 54:979 (1985).

    Google Scholar 

  75. J. S. Høye and G. Stell,J. Phys. Chem. 94:7899 (1990).

    Google Scholar 

  76. J. M. H. Levelt Sengers, C. M. Everhart, G. Morrison, and K. S. Pitzer,Chem. Eng. Comm. 47:315 (1986).

    Google Scholar 

  77. J. G. Kirkwoord,J. Chem. Phys. 2:351 (1934).

    Google Scholar 

  78. J. S. Høye and G. Stell,J. Chem. Phys. 67:1776 (1977);68:4145 (1978);71:1985 (1979);Faraday Disc. Chem. Soc. (Ion-Ion Ion-Solvent Interactions)64:16–21 (1978); see also C. W. Outhwaite,Mol. Phys. 31:1345 (1976).

    Google Scholar 

  79. G. Stell, G. N. Patey, and J. S. Høye,Adv. Chem. Phys. 48:183 (1981).

    Google Scholar 

  80. D. J. Mitchell, D. A. McQuarrie, Attila Szabo, and J. G. Groeneveld,J. Stat. Phys. 17:15 (1977); J. S. Høye and G. Stell,J. Chem. Phys. 67:1776 (1977); D. Chan, D. Mitchell, B. Ninham, and B. Pailthorpe,J. Chem. Phys. 69:691 (1978); M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980); Ph. A. Martin and Ch. Gruber,J. Stat. Phys. 31:691 (1983).

    Google Scholar 

  81. S. Levine andG. Bell, InInternational Symposium on Electrolytes, G. Pesce, ed. (Pergamon Press, New York, 1962); S. Levine and D. K. Rozenthal, InChemical Physics of Ionic Solution, B. E. Conney and R. G. Barradas, eds. (Wiley, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stell, G. Criticality and phase transitions in ionic fluids. J Stat Phys 78, 197–238 (1995). https://doi.org/10.1007/BF02183346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183346

Key Words

Navigation