Skip to main content
Log in

Phase transitions in phosphatidylcholine foam bilayers

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Foam bilayers from individual and mixed phosphatidylcholines are experimentally studied at different temperatures. Occurrence of a chain-melting phase transition in the foam bilayers is detected by two independent parameters—the critical concentrationC c for formation of foam bilayer and the foam bilayer thickness. The data forC c are discussed on the basis of the hole-nucleation theory, which applies the Ising model to foam bilayers and uses the mean-field approximation for interpretation of their stability. This allows the determination of the binding energy of a phospholipid molecule in gel and liquid-crystalline foam bilayers. New possibilities to relate the microscopic and macroscopic characteristics of foam bilayers are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kashchiev and D. Exerowa, Nucleation mechanism of rupture of Newtonian black films. I. Theory,J. Colloid Interface Sci. 77:501–511 (1980).

    Google Scholar 

  2. D. Exerowa and D. Kashchiev, Hole-mediated stability and permeability of bilayers,Contemp. Phys. 27:429–461 (1986).

    Google Scholar 

  3. A. V. Prokhorov and B. V. Derjaguin, On the generalized theory of bilayer film rupture,J. Colloid Interface Sci. 125:111–121 (1988).

    Google Scholar 

  4. Yu. A. Chizmadzhev, V. B. Arakelyan, and V. F. Pastushenko, Electric breakdown of bilayer lipid membranes. III. Analysis of possible mechanisms of defect origination,Bioelectrochem. Bioenerg. 6:63–70 (1979).

    Google Scholar 

  5. D. Kashchiev and D. Exerowa, Bilayer lipid membrane permeation and rupture due to hole formation,Biochim. Biophys. Acta 732:133–145 (1983).

    Google Scholar 

  6. D. Exerowa, D. Kashchiev, and D. Platikanov, Stability and permeability of amphiphile bilayers,Adv. Colloid Interface Sci. 40:201–256 (1992).

    Google Scholar 

  7. D. Exerowa, R. Cohen, and A. Nikolova, Newton black films stabilized with insoluble monolayers obtained by adsorption from the gas phase,Colloids Surfaces 24:43–49 (1987).

    Google Scholar 

  8. D. Chowdhury and D. Stauffer, Nucleation and size-distribution of holes in a microscopic model of Newton black films,Physica A 189:70–80 (1992).

    Google Scholar 

  9. D. Morawietz, D. Chowdhury, S. Vollmar, and D. Stauffer, Simulation of Widom model kinetics for microemulsions,Physica A 187:126–132 (1992).

    Google Scholar 

  10. P. Yeagle,The Membranes of Cells (Academic Press, New York, 1987).

    Google Scholar 

  11. K. Larsson, Physical properties—Structural and physical characteristics, inThe Lipid Handbook, F. D. Gunstone, J. L. Harwood, and F. B. Padley, eds. (Chapman and Hall, London, 1986), pp. 321–384.

    Google Scholar 

  12. C. Grabielle-Madelmont and R. Perron, Calorimetric studies on phospholipid-water systems. I. DL-Dipalmitoylphosphatidylcholine (DPPC)-water system,J. Colloid Interface Sci. 95:471–482 (1983).

    Google Scholar 

  13. D. M. Small, Phase equilibria and structure of dry and hydrated egg lecithin,J. Lipid Res. 8:551–557 (1967).

    Google Scholar 

  14. C. M. Knobler, Recent developments in the study of monolayers at the air-water interface,Adv. Chem. Phys. 77:397–449 (1990).

    Google Scholar 

  15. L. G. Mikayelyan and S. A. Adzhyan, Physical-chemical characteristics of flat lipid membranes during a phase transition,Biophysics 31:698–702 (1986).

    Google Scholar 

  16. J. Nagle, Theory of the main lipid bilayer phase transition,Annu. Rev. Phys. Chem. 31:157–195 (1980).

    Google Scholar 

  17. A. Sheludko, Thin liquid films,Ads. Colloid Interface Sci. 1:391–464 (1967).

    Google Scholar 

  18. D. Exerowa, T. Kolarov, and Khr. Khristov, Direct measurement of disjoining pressure in black foam films. I. Films from an ionic surfactant,Colloids Surfaces 22:171–185 (1987).

    Google Scholar 

  19. T. L. HillAn Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, Massachusetts, 1960).

    Google Scholar 

  20. D. Exerowa, B. Balinov, A. Nikolova, and D. Kashchiev On the probability for observation of Newtonian black film in foam film,J. Colloid Interface Sci. 95:289–291 (1983).

    Google Scholar 

  21. Ch. Tanford, Hydrophobic free energy, micelle formation and the association of proteins with amphiphiles,J. Mol. Biol. 67:59–74 (1972).

    Google Scholar 

  22. R. Cohen, R. Koynova, B. Tenchov and D. Exerowa, Direct measurement of interaction forces in free thin liquid films stabilized with phosphatidylcholine,Eur. Biophys. J. 20:203–208 (1991).

    Google Scholar 

  23. H. J. Hinz and J. M. Surtevant, Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-α-lecithins,J. Biol. Chem. 247:6071–6075 (1972).

    Google Scholar 

  24. E. M. Duyvis, Thesis, Utrecht University, Utrecht (1962).

  25. B. G. Tenchov, H. Yao, and I. Hatta, Time-resolved X-ray diffraction and calorimetric studies at low scan rates. I. Fully hydrated dipalmitoylphosphatidylcholine (DPPC) and DPPC/water/ethanol phases,Biophys. J. 56:757–768 (1989).

    Google Scholar 

  26. W. Tamura-Lis, L. J. Lis, S. Qadri, and P. J. Quin, Ethanol-phosphatidylcholine interactions: A real time X-ray diffraction study,Mol. Cryst. Liq. Cryst. 178:79–88 (1990).

    Google Scholar 

  27. N. Yellin and I. W. Levin, Hydrocarbon chaintrans-gauche isomerization in phospholipid bilayer gel assemblies,Biochemistry 16:642–647 (1977).

    Google Scholar 

  28. M. J. Janiak, D. M. Small, and G. G. Shipley, Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl- and dipalmitoyllecithin,Biochemistry 15:4575–4580 (1976).

    Google Scholar 

  29. C. A. Helm, H. Möhwald, K. Kjaer, and J. Als-Nielsen Phospholipid monolayer density distribution perpendicular to the water surface. A synchrotron X-ray reflectivity study,Europhys. Lett. 4:697–703 (1987).

    Google Scholar 

  30. A. Nikolova, D. Kashchiev, and D. Exerowa, Effect of temperature on the rupture of Newton black foam films,Colloids Surfaces 36:339–351 (1989).

    Google Scholar 

  31. I. Penev, D. Exerowa, and D. Kashchiev Rupture of Newtonian black foam films by α-particle irradiation: Hole mechanism,Colloids Surfaces 25:67–75 (1987).

    Google Scholar 

  32. V. G. Ivkov and G. N. Beresovskii,Lipidnii Bisloi Biologicheskih Membran (Nauka, Moscow, 1982).

    Google Scholar 

  33. J. D. Litster, Stability of lipid bilayers and red blood cell membranes,Phys. Lett. A 53A(3):193–194 (1975).

    Google Scholar 

  34. F. P. Jones, P. Tevlin and L. E. H. Trainor, Phase transitions of lipid bilayers. II. Mean field theory,J. Chem. Phys. 91:1918–1925 (1989).

    Google Scholar 

  35. R. E. Goldstein and S. Leibler, Structural phase transitions of interacting membranes,Phys. Rev. A 40:1025–1035 (1989).

    Google Scholar 

  36. A. Petrov, M. Mitov, and A. Derzhanski, Edge energy and pore stability in bilayer lipid membranes, inAdvances in Liquid Crystal Research and Applications, Vol. 2, L. Bata, ed. (Pergamon Press, Oxford, 1980), pp. 695–737.

    Google Scholar 

  37. W. Harbich and W. Helfrich, The swelling of egg lecithin in water,Chem. Phys. Lipids 36:39–63 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolova, A., Exerowa, D. Phase transitions in phosphatidylcholine foam bilayers. J Stat Phys 78, 147–160 (1995). https://doi.org/10.1007/BF02183343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183343

Key Words

Navigation