Skip to main content
Log in

Growth, percolation, and correlations in disordered fiber networks

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper studies growth, percolation, and correlations in disordered fiber networks. We start by introducing a 2D continuum deposition model with effective fiber-fiber interactions represented by a parameterp which controls the degree of clustering. Forp=1 the deposited network is uniformly random, while forp=0 only a single connected cluster can grow. Forp=0 we first derive the growth law for the average size of the cluster as well as a formula for its mass density profile. Forp>0 we carry out extensive simulations on fibers, and also needles and disks, to study the dependence of the percolation threshold onp. We also derive a mean-field theory for the threshold nearp=0 andp=1 and find good qualitative agreement with the simulations. The fiber networks produced by the model display nontrivial density correlations forp<1. We study these by deriving an approximate expression for the pair distribution function of the model that reduces to the exactly known case of a uniformly random network. We also show that the two-point mass density correlation function of the model has a nontrivial form, and discuss our results in view of recent experimental data on mss density correlations in paper sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Evans,Rev. Mod. Phys. 65:1281 (1993).

    Google Scholar 

  2. V. Privman, InAnnual Reviews in Computational Physics, Vol. 3, D. Stauffer, ed. (World Scientific, Singapore, 1995).

    Google Scholar 

  3. G. Y. Onoda and E. G. Liniger,Phys. Rev. A 33:715 (1986); A. Schmit, R. Varoqui, S. Uniyal, J. L. Brash, and C. Pusiner,J. Colloid Interface Sci. 92:25 (1983); J. Feder and I. Giaever,J. Colloid Interface Sci. 78:144 (1980).

    Google Scholar 

  4. M. Deng and C. T. J. Dodson,Paper: An Engineered Stochastic Structure (Tappi Press, 1994).

  5. K. J. Niskanen and M. J. Alava,Phys. Rev. Lett. 73:3475 (1994).

    Google Scholar 

  6. P. Nielaba and V. Privman,Phys. Rev. E 51:2022 (1995).

    Google Scholar 

  7. N. Ryde, H. Kihira, and E. Matijevic,J. Colloid Interface Sci. 151:421 (1992).

    Google Scholar 

  8. A.-L. Barabasi and H. E. Stanley,Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  9. C. A. Murray and D. G. Grier,Am. Sci. 83:238 (1995).

    Google Scholar 

  10. M. L. Kurnaz and J. V. Maher,Phys. Rev. E 53:978 (1996).

    Google Scholar 

  11. S. Schwarzer,Phys. Rev. E. 52:6461 (1995).

    Google Scholar 

  12. N. Provatas, M. J. Alava, and T. Ala-Nissila,Phys. Rev. E 54 (1996). N. Provatas, M. J. Alava, and T. Ala-Nissila, Unpublished (1996).

  13. G. E. Pike and C. H. Seager,Phys. Rev. B 10:1421 (1974).

    Google Scholar 

  14. I. Balberg and N. Binenbaum,Phys. Rev. B 28:3799 (1983).

    Google Scholar 

  15. P. C. Robinson,J. Phys. A 16:605 (1983).

    Google Scholar 

  16. I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner,Phys. Rev. B 30:3933 (1984).

    Google Scholar 

  17. P. C. Robinson,J. Phys. A 17:2823 (1984).

    Google Scholar 

  18. A. L. R. Bug, S. A. Safran, and G. S. Grest,Phys. Rev. Lett. 55:1896 (1985).

    Google Scholar 

  19. I. Balberg,Phil. Mag. B 56:991 (1987).

    Google Scholar 

  20. D. Laría and F. Vericat,Phys. Rev. B 40:353 (1989).

    Google Scholar 

  21. S. B. Lee and S. Torquato,Phys. Rev. A 41:5338 (1990).

    Google Scholar 

  22. U. Alon, I. Balberg, and A. Drory,Phys. Rev. Lett. 66:2879 (1991).

    Google Scholar 

  23. C. Vanneste, A. Gilabert, and D. Sornette,Phys. Lett. A 155:174 (1991).

    Google Scholar 

  24. A. Drory, I. Balberg, and B. Berkowitz.Phys. Rev. E 49:949 (1994).

    Google Scholar 

  25. H. S. Choi, J. Talbot, G. Tarjus, and P. Viot,Phys. Rev. E 51:1353 (1995).

    Google Scholar 

  26. M. D. Rintoul and S. Torquato,Phys. Rev. E 52:2635 (1995).

    Google Scholar 

  27. W. J. Boudville and T. C. McGill,Phys. Rev. B 39:369 (1980).

    Google Scholar 

  28. J. Aström, Pro Gradu avhandling, Abo Akademi, Unpublished (1989).

  29. N. Provatas, T. Ala-Nissila, and M. J. Alava,Phys. Rev. Lett. 75:3556 (1995).

    Google Scholar 

  30. D. Stauffer and A. Aharony,Introduction to Percolation Theory (Taylor and Francis. London. 1994).

    Google Scholar 

  31. J. Hoshen and R. Kopelman,Phys. Rev. B 14:3438 (1976).

    Google Scholar 

  32. P. J. Reynolds, H. E. Stanley, and W. Klein,Phys. Rev. B 21:1223 (1980).

    Google Scholar 

  33. A. Weinrib.Phys. Rev. B 29:387 (1984).

    Google Scholar 

  34. O. J. Kallmes and H. Corte,Tappi J. 43:737 (1960).

    Google Scholar 

  35. B. Ghosh,Calcutta Math. Soc. 43(1):17 (1951).

    Google Scholar 

  36. D. E. Sanders and J. W. Evans,Phys. Rev. A 38:4186 (1988).

    Google Scholar 

  37. L. Haugland, B. Norman, and D. Wahren, Svensk Papperstidning no. 10, 362 (1974).

  38. J.-P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, New York, 1986).

    Google Scholar 

  39. R. J. Kerekes and C. J. Shell,J. Pulp Paper Sci. 18:132 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ala-Nissila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provatas, N., Haataja, M., Seppälä, E. et al. Growth, percolation, and correlations in disordered fiber networks. J Stat Phys 87, 385–413 (1997). https://doi.org/10.1007/BF02181493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181493

Key Words

Navigation