Skip to main content
Log in

Invariant manifolds associated to nonresonant spectral subspaces

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that, if the linearization of a map at a fixed point leaves invariant a spectral subspace which satisfies certain nonresonance conditions, the map leaves invariant a smooth manifold tangent to this subspace. This manifold is as smooth as the map—when the smoothness is measured in appropriate scales—but is unique amongC L invariant manifolds, whereL depends only on the spectrum of the linearization or on some more general smoothness classes that we detail. We show that if the nonresonance conditions are not satisfied, a smooth invariant manifold need not exist, and we also establish smooth dependence on parameters. We also discuss some applications of these invariant manifolds and briefly survey related work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. Robbin,Transversal Mappings and Flows (Benjamin, New York, 1967).

    Google Scholar 

  2. A. Banyaga, R. de la Llave, and C. E. Wayne, Cohomology equations and geometric versions of Sternberg linearization theorem [mp_arc preprint 94-135].

  3. N. Bogoliubov and A. Mitropolskii,Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1960).

    Google Scholar 

  4. M. Le Bellac,Des phénomènes critiques aux champs de jauge (Intereditions/Ed. du CNRS, Paris, 1988).

    Google Scholar 

  5. P. Collet, J.-P. Eckmann, and H. Koch, Period-doubling bifurcations for families of maps on ℝn,J. Stat. Phys. 25:1–14 (1980).

    Google Scholar 

  6. P. Collet, J.-P. Eckmann, and O. E. Lanford III, Universal properties for maps of an interval,Commun. Math. Phys. 76:211–254 (1984).

    Google Scholar 

  7. J. Casasayas, E. Fontich, and A. Nunes, Invariant manifolds for a class of parabolic points,Nonlinearity 5:1193–1209 (1992).

    Google Scholar 

  8. X. Cabré and E. Fontich, Regularity and uniqueness of one dimensional invariant manifolds, University of Barcelona preprint.

  9. A. C. D. van Enter, R. Fernandez, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory,J. Stat. Phys. 72:879–1178 (1993).

    Google Scholar 

  10. N. Fenichel, Persistence and smoothness of invariant manifolds for flows,Ind. Math. J. 21:193–226 (1971).

    Google Scholar 

  11. N. Fenichel, Asymptotic stability with rate conditions,Ind. Math. J. 23:1109–1137 (1973).

    Google Scholar 

  12. E. Fontich, Invariant manifolds corresponding to eigenvalues equal to one in Henon-like maps, University of Barcelona preprint.

  13. K. Gawdezki, A. Kupianen, and B. Tirozzi, Renormalons: A dynamical systems approach,Nucl. Phys. B 257:610–628 (1985).

    Google Scholar 

  14. M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets,Proc. Symp. Pure Math. 14:133–163 (1970).

    Google Scholar 

  15. J. Hale,Ordinary Differential Equations (Wiley, New York, 1969).

    Google Scholar 

  16. M. C. Irwin, On the smoothness of the composition map,Q. J. Math. 23:113–133 (1972).

    Google Scholar 

  17. M. C. Irwin, On the stable manifold theorem,Bull. Lond. Math. Soc. 2:196–198 (1970).

    Google Scholar 

  18. M. C. Irwin, A new proof of the pseudostable manifold theorem,J. Lond. Math. Soc. 21:557–566 (1980).

    Google Scholar 

  19. M. Jiang, R. de la Llave, and Y. Pesin, On the integrability of intermediate distributions for Anosov diffeomorphisms,Ergodic Theory Dynam. Syst. 15:317–331 (1995).

    Google Scholar 

  20. N. Kurzweil, On approximation in real Banach spaces,Studia Math. 14:213–231 (1954).

    Google Scholar 

  21. T. Kato,Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  22. A. Kelley, The stable, center-stable, center, center-unstable, unstable invariant manifold theorems [Appendix to ref. 1].

  23. B. Li, N. Madras, and A. D. Sokal, Critical exponents, hyperscaling and universal amplitude ratios for two and three dimensional self-avoiding walks,J. Stat. Phys. 80:661–754 (1995).

    Google Scholar 

  24. R. de la Llave and C. E. Wayne, On Irwin's proof of the pseudostable manifold theorem,Math. Z. 219:301–321 (1995).

    Google Scholar 

  25. O. E. Lanford III, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, inLecture Notes in Mathematics, Vol. 322 (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  26. O. E. Lanford III, Introduction to the mathematical theory of dynamical systems, inChaotic Behavior of Deterministic Systems, Les Houches 1981 (North-Holland, 1983).

  27. E. B. Leach and J. H. M. Whitfield, Differentiable functions and rough norms on Banach spaces,Proc. AMS 33:120–126 (1972).

    Google Scholar 

  28. J. Marsden and M. McCracken,The Hopf Bifurcation and Its Applications (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  29. F. Martinelli and E. Olivieri, Some remarks on pathologies or renormalization group transformations for the Ising model,J. Stat. Phys. 72:1169–1178 (1993).

    Google Scholar 

  30. E. Nelson,Topics in Dynamics: I. Flows (Princeton University Press, Princeton, New Jersey, 1969).

    Google Scholar 

  31. Y. Pesin, Families of invariant manifolds corresponding to non-zero characteristic exponents,Math. USSR Izv. 10:1261–1305 (1976).

    Google Scholar 

  32. J. Pöschel, On invariant manifolds of complex analytic mappings near fixed points, inCritical Phenomena, Random Systems, Gauge Theories, K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986).

    Google Scholar 

  33. M. Reed and B. Simon,Methods of Modern Mathematical Physics I (Academic Press, New York, 1972).

    Google Scholar 

  34. S. Sternberg, On the structure of local homeomorphism of Euclideann-space II,Am. J. Math. 80:623–631 (1958).

    Google Scholar 

  35. E. B. Vul, Y. G. Sinai, and K. M. Khanin, Feigenbaum universality and the thermodynamic formalism,Russ. Math. Surv. 39:1–40 (1984).

    Google Scholar 

  36. S. Wiggins,Normally Hyperbolic Manifolds in Dynamical Systems (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  37. M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds (Springer-Verlag, New York),Lec. Notes in Math. 583 (1977).

    Google Scholar 

  38. M. Shub, Stabilité globale des systèmes dynamiques,Astérisque 56 (1978).

  39. J. Mather, Characterization of Anosov diffeomorphisms,Indag. Mat. 30:479–483 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Llave, R. Invariant manifolds associated to nonresonant spectral subspaces. J Stat Phys 87, 211–249 (1997). https://doi.org/10.1007/BF02181486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181486

Key Words

Navigation