Skip to main content
Log in

Thermodynamic formalism and localization in Lorentz gases and hopping models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic formalism expresses chaotic properties of dynamical systems in terms of the Ruelle pressure ψ(β). The inverse-temperature-like variable β allows one to scan the structure of the probability distributin in the dynamic phase space. This formalism is applied here to a lorentz lattice gas. where a particle moving on a lattice of sizeL d collides with fixed scatterers placed at random locations. Here we give rigorous arguments that the Ruelle pressure in the limit of infinite systems has two branches joining with a slope discontinuity at β=1. The low- and high-β branches correspond to localization of trajectories on respectively the “most chaotic” (highest density) region and the “most deterministic” (lowest density) region, i.e. ψ(β) is completely controlled by rare fluctuations in the distribution of scatterers on the lattice. and it dose not carry and information on the global structure of the static disorder. As β approaches unity from either side, a localization-delocalization transition leads to a state where trajectories are extended and carry information on transprot properties. At finiteL the narrow region around β=1 where the trajectories are extended scales as (InL)−2. where α depends on the sign of 1−β, ifd>1, and as (L InL)−1 ifd=1. This result appears to be general for diffusive systems with static disorder, such as random walks in random environments or for the continuous Lorentz gas. Other models of random walks on disordered lattices, showing the same phenomenon, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gaspard and G. Nicolis,Phys. Rev. Lett. 65:1693 (1990).

    Google Scholar 

  2. J. R. Dorfman and P. Gaspard,Phys. Rev. E 51:28 (1995).

    Google Scholar 

  3. P. Gaspard and J. R. Dorfman,Phys. Rev. E 52:3525 (1995).

    Google Scholar 

  4. D. J. Evans, E. G. D. Cohen, and G. P. Morriss,Phys. Rev. A 42:5990 (1990).

    Google Scholar 

  5. D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978).

    Google Scholar 

  6. C. Beck and F. Schlögl,Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  7. P. Gaspard and F. Baras,Phys. Rev. E 51:5332 (1995).

    Google Scholar 

  8. M. H. Ernst, J. R. Dorfman, R. Nix, and D. Jacobs,Phys. Rev. Lett. 74:4416 (1995).

    Google Scholar 

  9. J. R. Dorfman, M. H. Ernst, and D. Jacobs,J. Stat. Phys. 81:497 (1995).

    Google Scholar 

  10. M. H. Ernst and J. R. Dorfman, In25 Years of Non-Equilibrium Statistical Mechanics, J. J. Brey, J. Marro, J. M. Rubi, and M. San Miguel, eds. (Springer-Verlag, Berlin, 1995), p. 199.

    Google Scholar 

  11. H. van Beijeren, A. Latz, and J. R. Dorfman, Lyapunov exponents and KS entropies of random lorentz gases, unpublished.

  12. C. Appert, H. van Beijeren, M. H. Ernst, and J. R. Dorfman,Phys. Rev. E 54, R1013 (1996).

    Google Scholar 

  13. C. Appert and M. H. Ernst, Chaos properties and localization in Lorentz latice gases,Physical Review E, submitted. Archived on chao-dyn(a xyz.lanl.gor, #9705011.

  14. J. W. Haus and K. Kehr,Phys. Rep. 150:263 (1987).

    Google Scholar 

  15. L. Acedo and M. H. Ernst, Lyapunov exponents of random walkers on a bond-disordered lattice,Physica A, submitted.

  16. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. I, 2nd ed. (Wiley, New York, 1957).

    Google Scholar 

  17. M. H. Ernst and J. R. Dorfman, Chaos and diffusion in persistent random walks, unpublished.

  18. F. N. David and D. E. Barton,Combinatorial Chance (C. Griffin & Co., London, 1962).

    Google Scholar 

  19. M. D. Donsker and S. R. S. Varadhan,Commun. Pure Appl. Math. 42:243 (1989)

    Google Scholar 

  20. I. M. Lifshitz,Adv. Phys. 13:483 (1964).

    Google Scholar 

  21. R. B. Griffiths,Phys. Rev. Lett. 23:17 (1969).

    Google Scholar 

  22. T. Halpin-Healy and Z. Zhang,Phys. Rep. 254:215 (1995).

    Google Scholar 

  23. C. Appert, C. Bokel, J. R. Dorfman, and M. H. Ernst,Physica D, (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appert, C., van Beijeren, H., Ernst, M.H. et al. Thermodynamic formalism and localization in Lorentz gases and hopping models. J Stat Phys 87, 1253–1271 (1997). https://doi.org/10.1007/BF02181283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181283

Key Words

Navigation