Skip to main content
Log in

The computational complexity of the Lorentz lattice gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Lorentz lattice gas is studied from the perspective of computational complexity theory. It is shown that using massive parallelism, particle trajectories can be simulated in a time that scales logarithmically in the length of the trajectory. This result characterizes the “logical depth” of the Lorentz lattice gas and allows us to compare it to other models in statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Ernst and G. A. van Velzen, Lattice Lorentz gas,J. Phys. A: Math. Gen. 22:4611 (1989).

    Google Scholar 

  2. M. H. Ernst and G. A. van Velzen, Long-time tails in lattice Lorentz gases,J. Stat. Phys. 57:455 (1989).

    Google Scholar 

  3. H. van Beijeren and M. H. Ernst, Diffusion in Lorentz lattice gas automata with backscattering.J. Stat. Phys. 70:793 (1993).

    Google Scholar 

  4. M. H. Ernst, J. R. Dorfman, and D. Jacobs, Mean-field theory for Lyapunov exponents and Kolmogorov-Sinai entropy in Lorentz lattice gases,Phys. Rev. Lett. 74:4416 (1995).

    Google Scholar 

  5. E. G. D. Cohen and F. Wang, Novel phenomena in Lorentz lattice gases.Physica A 219:56 (1995).

    Google Scholar 

  6. J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, Reading, Massachusetts, 1979).

    Google Scholar 

  7. H. R. Lewis and C. H. Papadimitriou,Elements of the Theory of Computation (Prentice-Hall, Englewood Cliffs, New Jersey, 1981).

    Google Scholar 

  8. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo,Limits to Parallel Computation: P-Completeness Theory (Oxford University Press, Oxford, 1995).

    Google Scholar 

  9. D. S. Johnson, A catalog of complexity classes, inHandbook of Theoretical Computer Science, Vol. A:Algorithms and Complexity, J. van Leeuwan ed. (M.I.T. Press/Elsevier, 1990), p. 68.

    Google Scholar 

  10. M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).

    Google Scholar 

  11. A. Gibbons and W. Rytter,Efficient Parallel Algorithms (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  12. J. Machta and R. Greenlaw, The parallel complexity of growth models.J. Stat. Phys. 77:755 (1994).

    Google Scholar 

  13. J. Machta and R. Greenlaw, The computational complexity of generating random fractals.J. Stat. Phys. 82:1299 (1990).

    Google Scholar 

  14. H. Venkateswaran, Circuit definitions of nondeterministic complexity classes,SIAM J. Computing 21:655 (1992).

    Google Scholar 

  15. D. A. M. Barrington and N. Immerman, Time, hardware, and uniformity, inStructure in Complexity Theory: Ninth Annual Conference (1994), p. 176.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machta, J., Moriarty, K. The computational complexity of the Lorentz lattice gas. J Stat Phys 87, 1245–1252 (1997). https://doi.org/10.1007/BF02181282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181282

Key Words

Navigation