Skip to main content
Log in

Microscopic derivation of non-Markovian thermalization of a Brownian particle

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, the first microscopic approach to Brownian motion is developed in the case where the mass density of the suspending bath is of the same order of magnitude as that of the Brownian (B) particle. Starting from an extended Boltzmann equation, which describes correctly the interaction with the fluid, we derive systematically via multiple-time-scale analysis a reduced equation controlling the thermalization of the B particle, i.e., the relaxation toward the Maxwell distribution in velocity space. In contradistinction to the Fokker-Planck equation, the derived new evolution equation is nonlocal both in time and in velocity space, owing to correlated recollision events between the fluid and particle B. In the long-time limit, it describes a non-Markovian generalized Ornstein-Uhlenbeck process. However, in spite of this complex dynamical behavior, the Stokes-Einstein law relating the friction and diffusion coefficients is shown to remain valid. A microscopic expression for the friction coefficient is derived, which acquires the form of the Stokes law in the limit where the meanfree path in the gas is small compared to the radius of particle B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Wax (ed.),Selected Papers on Noise and Stochastic Processes (Dover, New York, 1954).

    Google Scholar 

  2. A. Einstein,Investigations on the Theory of the Brownian Movement (Dover, New York, 1956).

    Google Scholar 

  3. N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1990).

    Google Scholar 

  4. J. L. Lebowitz and E. Rubin,Phys. Rev. 131:2381 (1963); P. Résibois and H. T. Davis,Physica 30:1077 (1964); J. L. Lebowitz and P. Résibois,Phys. Rev. 139:1101 (1965).

    Google Scholar 

  5. R. I. Cukier and J. M. Deutch,Phys. Rev. 177:240 (1969).

    Google Scholar 

  6. J. Mercer and T. Keyes,J. Stat. Phys. 32:35 (1983).

    Google Scholar 

  7. J. M. Deutch and I. Oppenheim,J. Chem. Phys. 54:3541 (1971); T. J. Murphy and J. L. Aguirre,J. Chem. Phys. 57:2098 (1972).

    Google Scholar 

  8. L. Bocquet, J. Piasecki, and J. P. Hansen,J. Stat. Phys. 76:505 (1994).

    Google Scholar 

  9. L. Bocquet, J. P. Hansen and J. Piasecki,Nuovo Cimento 16:981 (1994); J. Piasecki, L. Bocquet, and J. P. Hansen,Physica A 218:125 (1995).

    Google Scholar 

  10. E. H. Hauge and A. Martin-Löf,J. Stat. Phys. 7:259 (1973).

    Google Scholar 

  11. E. J. Hinch,J. Fluid. Mech. 72:499 (1975).

    Google Scholar 

  12. A. J. Masters,Mol. Phys. 57:303 (1986).

    Google Scholar 

  13. J. N. Roux,Physica A 188:526 (1992).

    Google Scholar 

  14. H. A. Lorentz,Lessen over Theoretische Natuurkunde, Vol. V. Kinetische Problemen, (E. J. Brill, Leiden, 1921).

    Google Scholar 

  15. D. Bedeaux and P. Mazur,Physica A 76:247 (1974).

    Google Scholar 

  16. M. Duerr, D. Goldstein, and J. Lebowitz,Commun. Math. Phys. 78:507 (1981).

    Google Scholar 

  17. H. van Beijeren and J. R. Dorfman,J. Stat. Phys. 23:335 (1980).

    Google Scholar 

  18. H. Spohn,Rev. Mod. Phys. 53:569 (1980).

    Google Scholar 

  19. P. Résibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  20. B. J. Alder and T. E. Wainwright,Phys. Rev. A 1:18 (1970); R. Zwanzig and M. Bixon,Phys. Rev. A 2:2005 (1970).

    Google Scholar 

  21. J. L. Lebowitz, J. K. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).

    Google Scholar 

  22. Y. Pomeau and P. Résibois,Phys. Rep. 19C:64 (1975).

    Google Scholar 

  23. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, (Benjamin, Reading, Massachusetts, (1975).

    Google Scholar 

  24. L. Bocquet, J. P. Hansen, and J. Plasecki,J. Stat. Phys. 76:527 (1994).

    Google Scholar 

  25. A. J. C. Ladd,Phys. Rev. Lett. 70:1339 (1993);J. Fluid Mech. 271:311 (1994).

    Google Scholar 

  26. P. D. Fedele and Y. W. Kim,Phys. Rev. Lett. 44:691 (1980); J. X. Zhu, D. J. Durian, J. Mueller, D. A. Weitz, and D. J. Pine,Phys. Rev. Lett. 68:2559 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Knowing the interest of Matthieu Ernst in the subtle and fundamental problems of kinetic theory, we have the pleasure to dedicate this study to him.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocquet, L., Piasecki, J. Microscopic derivation of non-Markovian thermalization of a Brownian particle. J Stat Phys 87, 1005–1035 (1997). https://doi.org/10.1007/BF02181268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181268

Key Words

Navigation