Skip to main content
Log in

Long-time translation and rotational Brownian motion in two dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The long-time translational and rotational motion of a Brownian particle in two dimensions is studied on the basis of the fluctuation-dissipation theorem and linearized hydrodynamics. The long-time motion follows from the low frequency behavior of the mobility matrix. The coefficient of the long-time tail for the translational motion turns out to be independent of shape and size of the body, in agreement with mode-coupling theory. For rotational Brownian motion the coefficient of the long-time tail is found to depend on the shape of the body. This result is in conflict with a recent prediction from mode-coupling theory, and indicates that the mode-coupling calculation should be revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Alder and T. E. Wainwright,Phys. Rev. A 1:18 (1970).

    Google Scholar 

  2. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. Lett. 25:1257 (1970).

    Google Scholar 

  3. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. Lett. 25:1254 (1970);J. Stat. Phys. 15:7, 23 (1976).

    Google Scholar 

  4. R. Zwanzig and M. Bixon,Phys. Rev. A 2:2005 (1970).

    Google Scholar 

  5. A. Widom,Phys. Rev. A 3:1394 (1971).

    Google Scholar 

  6. E. H. Hauge and A. Martin-Löf,J. Stat. Phys. 7:259 (1973).

    Google Scholar 

  7. D. Bedeaux and P. Mazur,Physica 76:247 (1974).

    Google Scholar 

  8. E. J. Hinch,J. Fluid Mech. 72:499 (1975).

    Google Scholar 

  9. B. Cichocki and B. U. Felderhof,Physica A 211:25 (1994).

    Google Scholar 

  10. Y. W. Kim and J. E. Matta,Phys. Rev. Lett. 31:208 (1973).

    Google Scholar 

  11. P. D. Fedele and Y. W. Kim,Phys. Rev. Lett. 44:691 (1980).

    Google Scholar 

  12. G. L. Paul and P. N. Pusey,J. Phys. A 14:3301 (1981).

    Google Scholar 

  13. C. Morkel, C. Gronemeyer, W. Gläser, and J. Bosse,Phys. Rev. Lett. 58:1873 (1987).

    Google Scholar 

  14. M. A. van der Hoef and D. Frenkel,Phys. Rev. A 41:4277 (1990).

    Google Scholar 

  15. A. J. C. Ladd,Phys. Rev. Lett. 70:1339 (1993).

    Google Scholar 

  16. A. J. Masters and T. Keyes,J. Stat. Phys. 39:215 (1985).

    Google Scholar 

  17. F. Garisto and R. Kapral,Phys. Rev. A 13:1652 (1976).

    Google Scholar 

  18. R. Hocquart and E. J. Hinch,J. Fluid Mech. 137:217 (1983).

    Google Scholar 

  19. B. Cichocki and B. U. Felderhof,Physica A 213:465 (1995).

    Google Scholar 

  20. C. P. Lowe, D. Frenkel, and A. J. Masters,J. Chem. Phys. 103:1582 (1995).

    Google Scholar 

  21. B. Cichocki and B. U. Felderhof,J. Chem. Phys. 104:7363 (1996).

    Google Scholar 

  22. P. Mazur and D. Bedeaux,Physica 76:235 (1974).

    Google Scholar 

  23. B. U. Felderhof,Physica A 84:557 (1976).

    Google Scholar 

  24. B. U. Felderhof,Physica A 84:569 (1976);88:61 (1977).

    Google Scholar 

  25. R. L. Varley and R.-L. Zhou,Physica A 127:363 (1984).

    Google Scholar 

  26. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  27. C. W. Oseen,Neuere Methoden und Ergebnisse in der Hydrodynamik (Akademische Verlagsgesellschaft, Leipzig, 1927), p. 29.

    Google Scholar 

  28. G. K. Batchelor,An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967), p. 245.

    Google Scholar 

  29. H. A. Lorentz,Zittingsverslag Kon. Acad. Wet. Amsterdam 5:168 (1896).

    Google Scholar 

  30. J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics (Noordhoff, Leyden, 1973), p. 85.

    Google Scholar 

  31. S. Kim and S. J. Karrila,Microhydrodynamics: Principles and Selected Applications (Butterworth, Boston, 1991), p. 154.

    Google Scholar 

  32. R. Schmitz and B. U. Felderhof,Physica A 116:163 (1982).

    Google Scholar 

  33. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids (Oxford University Press, Oxford, 1973), p. 341.

    Google Scholar 

  34. R. Kubo,Rep. Prog. Phys. 29:255 (1966).

    Google Scholar 

  35. B. U. Felderhof,J. Phys. A 11:921 (1978).

    Google Scholar 

  36. D. Edwardes,Q. J. Math. 26:70 (1892).

    Google Scholar 

  37. R. Hocquart,C. R. Acad. Sci. Paris 284A:1421 (1977).

    Google Scholar 

  38. T. E. Wainwright, B. J. Alder, and D. Gass,Phys. Rev. A 4:233 (1971).

    Google Scholar 

  39. M. A. van der Hoef and D. Frenkel,Phys. Rev. Lett. 66:1591 (1991).

    Google Scholar 

  40. M. A. van der Hoef and D. Frenkel,Transport Theory Stat. Phys. 24:1227 (1995).

    Google Scholar 

  41. C. P. Lowe and D. Frenkef,Physica A 220:251 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated in friendship to Prof. Matthieu Ernst on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cichocki, B., Felderhof, B.U. Long-time translation and rotational Brownian motion in two dimensions. J Stat Phys 87, 989–1003 (1997). https://doi.org/10.1007/BF02181267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181267

Key Words

Navigation