Skip to main content
Log in

Langevin equation approach to granular flow in a narrow pipe

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The gravity-driven flow of granular material through a rough, narrow vertical pipe is described using the Langevin equation formalism. Above a critical particle density the homogeneous flow becomes unstable with respect to short-wave length perturbations. In correspondence with experimental observations, we find clogging and density waves in the flowing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. R. Nagel,Rev. Mod. Phys. 64:321 (1992).

    Google Scholar 

  2. M. Jaeger and S. R. Nagel,Science 255:1523 (1992).

    Google Scholar 

  3. G. Ristow, InAnnual Reviews of Computational Physics I D. Stauffer, ed. (World Scientific, Singapore, 1995).

    Google Scholar 

  4. K. L. Schick and A. A. Verveen,Nature 251:599 (1974).

    Google Scholar 

  5. T. Pöschel,J. Phys. France 4:499 (1994).

    Google Scholar 

  6. T. Raafat, J. P. Hulin, and H. J. Herrmann, Density waves in dry granular media falling through a vertical pipe, Preprint (1995).

  7. G. Ristow and H. J. Herrmann,Phys. Rev. E 50:R5 (1994).

    Google Scholar 

  8. G. W. Baxter, R. P. Behringer, T. Fagert, and G. A. Johnson,Phys. Rev. Lett. 62: 2825 (1989); J. O. Cutress and R. F. Pulfer,Powder Technol. 1:213 (1967).

    Google Scholar 

  9. G. Baxter and R. P. Behringer,Phys. Rev. A 42:1017 (1990);Physica D 51:465 (1991).

    Google Scholar 

  10. G. Peng and H. J. Herrmann,Phys. Rev. E 49:R1796 (1994);Phys. Rev. E 51:1745 (1995).

    Google Scholar 

  11. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  12. J. Lee and M. Leibig,J. Phys. France 4:507 (1994).

    Google Scholar 

  13. M. J. Lighthill and G. B. Whitham,Proc. Roy. Soc. A 229: 281, 317 (1955).

    Google Scholar 

  14. A. Mehta, R. J. Needs, and S. Dattagupta,J. Stat. Phys. 68:1131 (1992).

    Google Scholar 

  15. I. Prigogine and R. Herman,Kinetic Theory of Vehicular Traffic (Elsevier, New York, 1971).

    Google Scholar 

  16. G. B. Whitham,Linear and Nonlinear Waves (Wiley, New York, 1974).

    Google Scholar 

  17. I. Goldhirsch and G. Zanetti,Phys. Rev. Lett. 70:1619 (1993).

    Google Scholar 

  18. T. Riethmüller, Theoretische Modellierung granularer Strome in dünnen Röhren mit Langevin-Gleichungen, Diploma Thesis, Humboldt Universität zu Berlin (1995).

  19. B. S. Kerner and P. Konhäuser,Phys. Rev. E 48:R2335 (1994); D. Helbing,Phys. Rev. E 51:1745 (1995).

    Google Scholar 

  20. D. A. Kurtze and D. C. Hong,Phys. Rev. E 52:218 (1995).

    Google Scholar 

  21. S. Savage,J. Fluid Mech. 241:109 (1992).

    Google Scholar 

  22. L. Schimansky-Geier, M. Mieth, H. Rosé, and H. Malchow,Phys. Lett. A 207: 140 (1995).

    Google Scholar 

  23. J. Duran, T. Mazozi, S. Luding, E. C'ément, and J. Rajchenbach, Preprint (1995).

  24. P. A. Cundall and O. D. L. Strack,Géotechnique 29:47 (1979).

    Google Scholar 

  25. P. K. Haff and B. T. Werner,Powder Technol. 48:239 (1986).

    Google Scholar 

  26. J. Lee,Phys. Rev. E 49:281 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Stauffer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riethmüller, T., Schimansky-Geier, L., Rosenkranz, D. et al. Langevin equation approach to granular flow in a narrow pipe. J Stat Phys 86, 421–430 (1997). https://doi.org/10.1007/BF02180213

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180213

Key Words

Navigation