Skip to main content
Log in

Approximation of the Boltzmann equation by discrete velocity models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two convergence results related to the approximation of the Boltzmann equation by discrete velocity models are presented. First we construct a sequence of deterministic discrete velocity models and prove convergence (as the number of discrete velocities tends to infinity) of their solutions to the solution of a spatially homogeneous Boltzmann equation. Second we introduce a sequence of Markov jump processes (interpreted as random discrete velocity models) and prove convergence (as the intensity of jumps tends to infinity) of these processes to the solution of a deterministic discrete velocity model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. O. Barrachina, Wild's solution of the nonlinear boltzmann equation,J. Stat. Phys. 52(1/2):357–368 (1988).

    Google Scholar 

  2. J.-M. Bony, Existence globale à données de Cauchy petites pour les modèles discrets de l'équation de Boltzmann,Commun. Partial Differential Equations 16(4&5):533–545 (1991).

    Google Scholar 

  3. C. Cercignani,The Boltzmann Equation and its Applications (Springer, New York, 1988).

    Google Scholar 

  4. S. N. Ethier and T. G. Kurtz,Markov Processes, Characterization and Convergence (Wiley, New York, 1986).

    Google Scholar 

  5. R. Illner and W. Wagner, A random discrete velocity model and approximation of the Boltzmann equation,J. Stat. Phys. 70(3/4):773–792 (1993).

    Google Scholar 

  6. J. L. Lebowitz and E. W. Montroll, eds.,Nonequilibrium Phenomena. I. The Boltzmann Equation (North-Holland, Amsterdam, 1983).

    Google Scholar 

  7. Y. L. Martin, F. Rogier, and J. Schneider, A deterministic method for solving the nonhomogeneous Boltzmann equation,C. R. Acad. Sci. Paris I Math. 314(6):483–487 (1992).

    Google Scholar 

  8. H. P. McKean, Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas,Arch. Rat. Mech. Anal. 21:343–367 (1966).

    Google Scholar 

  9. N. A. Nurlybaev, Discrete velocity method in the theory of kinetic equations,Transport Theory Stat. Phys. 22(1):109–119 (1993).

    Google Scholar 

  10. T. Płatkowski and R. Illner, Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory,SIAM Rev. 30(2):213–255 (1988).

    Google Scholar 

  11. A. S. Sznitman, Équations de type de Boltzmann, spatialement homogènes,Z. Wahrsch. Verw. Geb. 66(4):559–592 (1984).

    Google Scholar 

  12. H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,Z. Wahrsch. Verw. Geb. 46(1):67–105 (1978).

    Google Scholar 

  13. W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation,J. Stat. Phys. 66(3/4):1011–1044 (1992).

    Google Scholar 

  14. E. Wild, On Boltzmann's equation in the kinetic theory of gases,Proc. Camb. Phil. Soc. 47:602–609 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, W. Approximation of the Boltzmann equation by discrete velocity models. J Stat Phys 78, 1555–1570 (1995). https://doi.org/10.1007/BF02180142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180142

Key Words

Navigation