Skip to main content
Log in

Generalized Boltzmann equation for lattice gas automata

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper a theory is formulated that predicts velocity and spatial correlations between occupation numbers that occur in lattice gas automata violating semi-detailed balance. Starting from a coupled BBGKY hierarchy for then-particle distribution functions, cluster expansion techniques are used to derive approximate kinetic equations. In zeroth approximation the standard nonlnear Boltzmann equation is obtained; the next approximation yields the ring kinetic equation, similar to that for hard-sphere systems, describing the time evolution of pair correlations. The ring equation is solved to determine the (nonvanishing) pair correlation functions in equilibrium for two models that violate semidetailed balance. One is a model of interacting random walkers on a line, the other one is a two-dimensional fluid-type model on a triangular lattice. The numerical predictions agree very well with computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Dorfman and H. van Beijeren, In “Statistical Mechanics, Part B: Time-Dependent Processes, B. J. Berne, ed. (Plenum Press, New York, 1977), p. 65.

    Google Scholar 

  2. E. G. D. Cohen, InFundamental Problems in Statistical Mechanis II, E. G. D. Cohen, ed. (North-Holland, Amsterdam, (1968), p. 228.

    Google Scholar 

  3. J. R. Dorfman, InFundamental Problems in Statistical Mechanics III, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1975), p. 277.

    Google Scholar 

  4. T. R. Kirkpatrick and M. H. Ernst,Phys. Rev. A 44:8051 (1991).

    Google Scholar 

  5. G. A. van Velzen, R. Brito, and M. H. Ernst,J. Stat. Phys. 70:811 (1993).

    Google Scholar 

  6. G. A. van Velzen and M. H. Ernst,J. Phys. A: Math. Gen. 22:4611 (1989).

    Google Scholar 

  7. A. J. H. Ossendrijver, A. Santos, and M. H. Ernst,J. Stat. Phys. 71:1015 (1993).

    Google Scholar 

  8. R. van Roij and M. H. Ernst,J. Stat. Phys. 73:47 (1993).

    Google Scholar 

  9. R. Brito and M. H. Ernst,Phys. Rev. A 46:875 (1992).

    Google Scholar 

  10. M. Gerits, M. H. Ernst, and D. Frenkel,Phys. Rev. E 48:988 (1993).

    Google Scholar 

  11. B. M. Boghosian and W. Taylor, Preprint (available from bulletin board comp-gas@xyzlanl.gov/9403003).

  12. M. S. Green and R. A. Picirelli,Phys. Rev. 132:1388 (1963).

    Google Scholar 

  13. B. Dubrulle, U. Frisch, M. Hénon, and J.-P. Rivet,J. Stat. Phys. 59:1187 (1990).

    Google Scholar 

  14. J. A. Somers and P. C. Rem, InCellular Automata and Modeling of Complex Physical Systems, P. Manneville, ed. (Springer, Berlin, in 1989), p. 161.

    Google Scholar 

  15. M. Hénon,J. Stat. Phys. 68:409 (1992).

    Google Scholar 

  16. H. J. Bussemaker and M. H. Ernst,J. Stat. Phys. 68:431 (1992).

    Google Scholar 

  17. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:31 (1987) 31 [reprinted in G. Doolen, ed.,Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, Singapore, 1990)].

    Google Scholar 

  18. E. C. G. Stueckelberg,Helv. Phys. Acta 25:577 (1952).

    Google Scholar 

  19. M. Hénon, InProceedings of NATO workshop, Waterloo, Canada, June 7–12 1993, A. Lawniczak and R. Kapral, eds. (Fields Institute Communications, American Mathematical Society).

  20. G. Zanetti,Phys. Rev. A 40:1539 (1989).

    Google Scholar 

  21. M. Hénon,Complex System 1:763 (1987).

    Google Scholar 

  22. M. H. Ernst and E. G. D. Cohen,J. Stat. Phys. 25:153 (1981).

    Google Scholar 

  23. D. Frenkel and M. H. Ernst,Phys. Rev. Lett. 63:2165 (1989).

    Google Scholar 

  24. T. Naitoh, M. H. Ernst, and J. W. Dufty,Phys. Rev. A 42:7187 (1990).

    Google Scholar 

  25. R. Kapral, A. Lawniczak, and P. Masiar,J. Chem. Phys. 96:2762 (1992); X.-G. Wu and R. Kapral,Phys. Rev. Lett. 70: 1940 (1993).

    Google Scholar 

  26. O. Biham, A. A. Middleton, and D. Levine,Phys. Rev. A 46:6124 (1992); J. M. Molera, F. C. Martinez, J. A. Cuesta, and R. Brito, Preprint (available from bulltin board compgas@xyz.lanl.gov/9406001).

    Google Scholar 

  27. B. Kamgar-Parsi, E. G. D. Cohen, and I. M. de Schepper,Phys. Rev. A. 35:4781 (1987).

    Google Scholar 

  28. S. P. Das, H. J. Bussemaker, and M. H. Ernst,Phys. Rev. E 48:245 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussemaker, H.J., Ernst, M.H. & Dufty, J.W. Generalized Boltzmann equation for lattice gas automata. J Stat Phys 78, 1521–1554 (1995). https://doi.org/10.1007/BF02180141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180141

Key Words

Navigation