Skip to main content
Log in

Finite-size scaling studies of one-dimensional reaction-diffusion systems. Part I. Analytical results

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider two single-species reaction-diffusion models on one-dimensional lattices of lengthL: the coagulation-decoagulation model and the annihilation model. For the coagulation model the system of differential equations describing the time evolution of the empty interval probabilities is derived for periodic as well as for open boundary conditions. This system of differential equations grows quadratically withL in the latter case. The equations are solved analytically and exact expressions for the concentration are derived. We investigate the finite-size behavior of the concentration and calculate the corresponding scaling functions and the leading corrections for both types of boundary conditions. We show that the scaling functions are independent of the initial conditions but do depend on the boundary conditions. A similarity transformation between the two models is derived and used to connect the corresponding scaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. v. Smoluchowski,Phys. Z. 17:557 (1916).

    Google Scholar 

  2. R. B. Stinchcombe, M. D. Grynberg, and M. Barma,Phys. Rev. E 47:4018 (1993).

    Google Scholar 

  3. M. Barma, M. D. Grynberg, and R. B. Stinchcombe,Phys. Rev. Lett. 70:1033 (1993).

    Google Scholar 

  4. K. Kang and S. Redner,Phys. Rev. A 30:2833 (1984).

    Google Scholar 

  5. K. Kang and S. Redner,Phys. Rev. Lett. 52:955 (1984).

    Google Scholar 

  6. B. Chopard, M. Droz, T. Karapiperis, and Z. Rácz,Phys. Rev. E 47:R40 (1993).

    Google Scholar 

  7. D. ben-Avraham and J. Köhler,J. Stat. Phys. 65:839 (1991).

    Google Scholar 

  8. P. G. de Gennes,J. Chem. Phys. 76:3316 (1982).

    Google Scholar 

  9. R. Kroon, H. Fleurent, and R. Sprik,Phys. Rev. E 47:2462 (1993).

    Google Scholar 

  10. R. Kopelman, S. J. Parus, and J. Prasad,Chem. Phys. 128:209 (1988).

    Google Scholar 

  11. V. Kuzovkov and E. Kotomin,Rep. Prog. Phys. 51:1479 (1988).

    Google Scholar 

  12. L. P. Kadanoff and J. Swift,Phys. Rev. 165:165 (1968).

    Google Scholar 

  13. P. Grassberger and M. Scheunert,Fortschr. Phys. 28: 547 (1980).

    Google Scholar 

  14. F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg,Ann. Phys. 230:250 (1994).

    Google Scholar 

  15. M. J. de Oliveira, T. Tomé, and R. Dickman,Phys. Rev. A 46:6294 (1992).

    Google Scholar 

  16. S. Sandow and G. Schütz,Europhys. Lett. 26:7 (1994).

    Google Scholar 

  17. I. Peschel, V. Rittenberg, and U. Schultze,Nucl. Phys. B 430:633 (1994).

    Google Scholar 

  18. F. C. Alcaraz and V. Rittenberg,Phys. Lett. B 314:377 (1993).

    Google Scholar 

  19. L.-H. Gwa and H. Spohn,Phys. Rev. Lett. 68:725 (1992).

    Google Scholar 

  20. L.-H. Gwa and H. Spohn,Phys. Rev. A 46:844 (1992).

    Google Scholar 

  21. C. R. Doering and D. ben-Avraham,Phys. Rev. Lett. 62:2563 (1989).

    Google Scholar 

  22. M. N. Barber, InPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. Lebowitz, eds. (Academic Press, New York, 1983), p. 145.

    Google Scholar 

  23. P. Christe and M. Henkel,Introduction to Conformal Invariance and Its Application to Critical Phenomena (Springer, Berlin, 1993), Chapter 3.

    Google Scholar 

  24. P. Argyrakis and R. Kopelman,Phys. Rev. A 41:2114 (1990).

    Google Scholar 

  25. M. Hoyuelos and H. O. Mártin,Phys. Rev. E 48:3309 (1993).

    Google Scholar 

  26. C. R. Doering and D. ben-Avraham,Phys. Rev. A 38:3035 (1988).

    Google Scholar 

  27. M. A. Burschka, C. R. Doering, and D. ben-Avraham,Phys. Rev. Lett. 63:700 (1989).

    Google Scholar 

  28. C. R. Doering and M. A. Burschka,Phys. Rev. Lett. 64:245 (1990).

    Google Scholar 

  29. J. Lin, C. R. Doering, and D. ben-Avraham,Chem. Phys. 146:355 (1990).

    Google Scholar 

  30. J. Lin,Phys. Rev. A 44:6706 (1991).

    Google Scholar 

  31. V. Privman,Phys. Rev. E 50:50 (1994).

    Google Scholar 

  32. J. Spouge,Phys. Rev. Lett. 60:871 (1988).

    Google Scholar 

  33. L. Peliti,J. Phys. A: Math. Gen. 19:L365 (1986).

    Google Scholar 

  34. M. Droz and L. Sasvári,Phys. Rev. E 48:R2343 (1993).

    Google Scholar 

  35. E. Barouch, B. M. McCoy, and M. Dresden,Phys. Rev. A 2:1075 (1970).

    Google Scholar 

  36. E. Barouch and B. M. McCoy,Phys. Rev. A 3:786 (1971).

    Google Scholar 

  37. M. Suzuki,Prog. Theor. Phys. 46:1337 (1971).

    Google Scholar 

  38. J. D. Johnson and B. M. McCoy,Phys. Rev. A 6:1613 (1972); M. Takahashi,Prog. Theor. Phys. 50:1519 (1973);51:1348 (1974); M. Lüscher,Nucl. Phys. B 117: 475 (1976); I. Affleck, InFields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1990), p. 563.

    Google Scholar 

  39. C. R. Doering, M. A. Burschka, and W. Horsthemke,J. Stat. Phys. 65:953 (1991).

    Google Scholar 

  40. D. ben-Avraham, M. A. Burschka, and C. R. Doering,J. Stat. Phys. 60:695 (1990).

    Google Scholar 

  41. T. D. Schultz, D. C. Mattis, and E. H. Lieb,Rev. Mod. Phys. 36:856 (1964).

    Google Scholar 

  42. E. Lieb, T. Schultz, and D. Mattis,Ann. Phys. (NY)16:407 (1961).

    Google Scholar 

  43. H. Hinrichsen and V. Rittenberg,Phys. Lett. B 275:350 (1992).

    Google Scholar 

  44. A. A. Lushnikov,Sov. Phys. JEPT 64:811 (1986).

    Google Scholar 

  45. J. G. Amar and F. Family,Phys. Rev. A 41:3258 (1990).

    Google Scholar 

  46. L. Braunstein, H. O. Mártin, M. D. Grynberg, and H. E. Roman,J. Phys. A 25: L255 (1992).

    Google Scholar 

  47. V. Privman,J. Stat. Phys. 69:629 (1992).

    Google Scholar 

  48. V. Privman,J. Stat. Phys. 72:845 (1993).

    Google Scholar 

  49. B. P. Lee,J. Phys. A 27:2633 (1994).

    Google Scholar 

  50. M. A. Burschka,Europhys. Lett. 16:537 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krebs, K., Pfannmüller, M.P., Wehefritz, B. et al. Finite-size scaling studies of one-dimensional reaction-diffusion systems. Part I. Analytical results. J Stat Phys 78, 1429–1470 (1995). https://doi.org/10.1007/BF02180138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180138

Key Words

Navigation