Skip to main content
Log in

Nonuniform van der Waals theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The liquid-vapor interface of a confined fluid at the condensation phase transition is studied in a combined hydrostatic/mean-field limit of classical statistical mechanics. Rigorous and numerical results are presented. The limit accounts for strongly repulsive short-range forces in terms of local thermodynamics. Weak attractive longer-range ones, like gravitational or van der Waals forces, contribute a self-consistent mean potential. Although the limit is fluctuationfree, the interface is not a sharp Gibbs interface, but its structure is resolved over the range of the attractive potential. For a fluid of hard balls with ∼−r −6 interactions the traditional condensation phase transition with critical point is exhibited in the grand ensemble: A vapor state coexists with a liquid state. Both states are quasiuniform well inside the container, but wall-induced inhomogeneities show up close to the boundary of the container. The condensation phase transition of the grand ensemble bridges a region of negative total compressibility in the canonical ensemble which contains canonically stable proper liquid-vapor interface solutions. Embedded in this region is a new, strictly canonical phase transition between a quasiuniform vapor state and a small droplet with extended vapor atmosphere. This canonical transition, in turn, bridges a region of negative total specific heat in the microanonical ensemble. That region contains subcooled vapor states as well as superheated very small droplets which are microcanonically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus, inThe Liquid State of Matter, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  2. M. H. Kalos, J. K. Percus, and M. Rao,J. Stat. Phys. 17:111 (1977).

    Google Scholar 

  3. D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  4. J. D. van der Waals, De Continuiteit van den Gas-en Vloeistoftoestand, Doctoral thesis, University of Leiden (1873) [English transl. inStudies in Statistical Mechanics XIV, J. L. Lebowitz and J. S. Rowlinson, eds. (North-Holland, Amsterdam, 1988)].

  5. J. C. Maxwell,Nature 11:358 (1875);J. Chem. Soc. 13:493 (1875) [reprinted inScientific Papers, Dover, New York].

    Google Scholar 

  6. L. S. Ornstein, Toepassing der Statistische Mechanica van Gibbs op molekulairtheoretische vraagstukken, Doctoral thesis, University of Leiden (1908).

  7. M. Kac,Phys. Fluids 2:8 (1959).

    Google Scholar 

  8. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer,J. Math. Phys. 4:216 (1963).

    Google Scholar 

  9. J. L. Lebowitz and O. Penrose,J. Math. Phys. 4:98 (1966).

    Google Scholar 

  10. P. C. Hemmer and J. L. Lebowitz, inPhase Transitions and Critical Phenomena, Vol. 5b, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  11. J. K. Percus,Trans. N. Y. Acad. Sci. 26:1062 (1964).

    Google Scholar 

  12. N. G. van Kampen,Phys. Rev. 135:A362 (1964).

    Google Scholar 

  13. J. K. Percus,Int. J. Quant. Chem. 16:33 (1982).

    Google Scholar 

  14. J. K. Percus,J. Stat. Phys. 52:1157 (1988).

    Google Scholar 

  15. J. Messer and H. Spohn,J. Stat. Phys. 29:561 (1982).

    Google Scholar 

  16. G. Eyink and H. Spohn,J. Stat. Phys. 70:833 (1993).

    Google Scholar 

  17. S. Kusuoka and Y. Tamura,J. Fac. Sci. Tokyo Univ. 31:223 (1984).

    Google Scholar 

  18. M. K.-H. Kiessling,Commun. Pure Appl. Math. 47:27 (1993).

    Google Scholar 

  19. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti,Commun. Math. Phys. 143 501 (1992).

    Google Scholar 

  20. W. Thirring,Lehrbuch der Mathematischen Physik 4 (Springer, Vienna, 1980).

    Google Scholar 

  21. J. Messer,Temperature-Dependent Thomas-Fermi Theory (Lecture Notes in Physics 147, Springer, Berlin, 1981).

    Google Scholar 

  22. N. Angelescu, M. Pulvirenti, and A. Teta,J. Stat. Phys. 74:147 (1994).

    Google Scholar 

  23. M. E. Fisher,Arch. Rat. Mech. Anal. 17:377 (1967).

    Google Scholar 

  24. D. Ruelle,Helv. Phys. Acta 36:183 (1963).

    Google Scholar 

  25. R. Dobrushin,Teorija Verojatn. i ee Prim. 9:626 (1964).

    Google Scholar 

  26. J. Fröhlich and Y. M. Park,J. Stat. Phys. 23:701 (1980).

    Google Scholar 

  27. R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  28. J. L. Lebowitz and J. K. Percus,J. Math. Phys. 4:116 (1963).

    Google Scholar 

  29. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, London, 1976).

    Google Scholar 

  30. J. Glimm and A. Jaffe,Quantum Physics (Springer, New York, 1981).

    Google Scholar 

  31. N. F. Carnahan and K. E. Starling,J. Chem. Phys. 51:635 (1969).

    Google Scholar 

  32. R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).

    Google Scholar 

  33. W. G. Hoover and F. H. Ree,J. Chem. Phnys. 49:3609 (1968).

    Google Scholar 

  34. M. K.-H. Kiessling and J. K. Percus,J. Math. Phys. submitted.

  35. M. K.-H. Kiessling and J. K. Percus, In preparation (1994).

  36. B. Stahl, M. K.-H. Kiessling, and K. Schindler,Planet. Space Sci., to appear.

  37. D. Lynden-Bell and R. M. Lynden-Bell,Monthly Not. R. Astron. Soc. 181:405 (1977).

    Google Scholar 

  38. J. B. Keller, inCavitation in Real Liquids, R. Davies, ed. (Elsevier, Amsterdam, 1964), p. 19

    Google Scholar 

  39. E. H. Lieb,J. Math. Phys. 7:1016 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, M.K.H., Percus, J.K. Nonuniform van der Waals theory. J Stat Phys 78, 1337–1376 (1995). https://doi.org/10.1007/BF02180135

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180135

Key Words

Navigation