Skip to main content
Log in

Three-dimensional immiscible lattice gas: Application to sheared phase separation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new lattice-gas cellular automaton model for simulating binary fluids in three dimensions is introduced. It is particularly suitable for modeling slow flows of mixtures with complicated interface geometries or within complicated boundaries, such as in the interior of a porous rock. Phase separation is triggered spontaneously in the model by statistical fluctuations and phase domains are approximately isotropic. The measured surface tension is large compared to that in analogous two-dimensional models. The model is applied to a study of the time-dependent effective viscosity of a phase-separating mixture in a simple shear flow. Results qualitatively match both experiment and theory: the viscosity increases rapidly, then decays gradually to a steady-state value which is larger than the viscosity of the pure fluids. The effective viscosity increases with increasing concentration and decreases with increasing strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Utracki,Polymer Alloys and Blends (Hanser Publishers, 1990).

  2. G. I. Taylor,Proc. R. Soc. Lond. A 138:41–48 (1932).

    Google Scholar 

  3. F. D. Rumscheidt and S. G. Mason,J. Colloid Sci. 16:238–261 (1961).

    Google Scholar 

  4. V. G. Levich,Physicochemical Hydrodynamics (Prentice-Hall Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  5. T. Gillespie, The effect of concentration on the viscosity of suspensions and emulsions, inRheology of Emulsions (Macmillan, (1963), pp. 115–124.

  6. S. Torza, R. G. Cox, and S. G. Mason,J. Colloid Interface Sci. 2:395–411 (1972).

    Google Scholar 

  7. A. Onuki,Phys. Rev. A 35:5149 (1987).

    Google Scholar 

  8. M. Doi and T. Ohta,J. Chem. Phys. 95:1242–1248 (1991).

    Google Scholar 

  9. B. V. Boshenyatov and I. V. Chernyshev,Fluid Mech. Sov. Res. 20:124–129 (1991).

    Google Scholar 

  10. D. Beysens, F. Perrot, and T. Baumberger,Physica A 204:76–86 (1994).

    Google Scholar 

  11. D. A. Drew,Annu. Rev. Fluid Mech. 15:261 (1983).

    Google Scholar 

  12. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti,J. Comput. Phys. 113:134–147 (1994).

    Google Scholar 

  13. T. Koga and K. Kawasaki,Physica A 196:389–415 (1993).

    Google Scholar 

  14. S. Puri and B. Dünweg,Phys. Rev. A 45:R6977-R6980 (1992).

    Google Scholar 

  15. D. H. Rothman and J. Keller,J. Stat. Phys. 52:1119 (1988).

    Google Scholar 

  16. C. Appert and S. Zaleski,Phys. Rev. Lett. 64:1 (1990).

    Google Scholar 

  17. C. Appert and S. Zaleski,J. Phys. II France 3:309–337 (1993).

    Google Scholar 

  18. D. H. Rothman and S. Zaleski,Rev. Mod. Phys. 66:1417–1479 (1994).

    Google Scholar 

  19. A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti,Phys. Rev. A. 43:4320–4327 (1991).

    Google Scholar 

  20. A. K. Gunstensen and D. H. Rothman,Europhys. Lett. 18(2):157–161 (1992).

    Google Scholar 

  21. D. Grunau, S. Chen, and K. Eggert,Phys. Fluids A 5:2557–2562 (1993).

    Google Scholar 

  22. F. J. Alexander, S. Chen, and D. W. Grunau,Phys. Rev. B 48:634 (1993).

    Google Scholar 

  23. X. Shan and H. Chen,Phys. Rev. E 47:1815–1819 (1993).

    Google Scholar 

  24. T. Toffoli and N. Margolus,Physica D 47:263–272 (1991).

    Google Scholar 

  25. C. Adler, B. Boghosian, E. G. Flekkøy, N. Margolus, and D. H. Rothman,J. Stat. Phys., this issue.

  26. K. Hamano, T. Ishii, M. Ozawa, J. V. Sengers, and A. H. Krall,Phys. Rev. E 51:1254–1262 (1995).

    Google Scholar 

  27. A. H. Krall, J. V. Sengers, and K. Hamano,Phys. Rev. Lett. 69:1963–1966 (1992).

    Google Scholar 

  28. B. Khuzhaerov,J. Eng. Phys. 1991:1564–1570.

  29. P. C. Rem and J. A. Somers, Cellular automata on a transputer network, inDiscrete Kinetic Theory, Lattice-Gas Dynamics, and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, singapore, 1989), p. 268.

    Google Scholar 

  30. C. Adler, D. d'Humières, and D. H. Rothman,Jour. Phys. I France 4:29–46 (1994).

    Google Scholar 

  31. A. K. Gunstensen and D. H. Rothman,Physica D 47:47–52 (1991).

    Google Scholar 

  32. D. H. Rothman and L. P. Kadanoff,Comput. Phys. 8:199–204 (1994).

    Google Scholar 

  33. U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  34. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:648 (1987).

    Google Scholar 

  35. G. Zanetti,Phys. Rev. A 40:1539 (1989).

    Google Scholar 

  36. L. Kadanoff, G. McNamara, and G. Zanetti,Phys. Rev. A 40:4527 (1989).

    Google Scholar 

  37. S. Wolfram,J. Stat. Phys. 45:471 (1986).

    Google Scholar 

  38. A. K. Gunstensen and D. H. Rothman,Physica D 47:53–63 (1991).

    Google Scholar 

  39. D. d'Humières, P. Lallemand, and U. Frisch,Europhys. Lett. 2:291 (1986).

    Google Scholar 

  40. H. S. M. Coxeter,Regular Polytopes (Dover, New York, 1973).

    Google Scholar 

  41. M. Hénon,Complex Systems 1:475–494 (1987).

    Google Scholar 

  42. G. Westland, Optimizing a reduced collision table for the FCHC-lattice gas automaton, Master's thesis, State University of Utrecht (April 1991).

  43. J. A. Somers and P. C. Rem, Obtaining numerical results from the 3D FCHC-lattice gas, inNumerical Methods for the Simulation of Multi-Phase and Complex Flow, T. M. M. Verheggen, ed. (Springer-Verlag, Berlin, 1992), pp. 59–78.

    Google Scholar 

  44. J. A. Somers and P. C. Rem,Physica D 47:39–46 (1991).

    Google Scholar 

  45. S. Chen, G. D. Doolen, K. Eggert, D. Grunau, and E. Y. Loh,Phys. Rev. A 43:7053–7056 (1991).

    Google Scholar 

  46. C. Appert, D. H. Rothman, and S. Zaleski,Physica D 47:85–96 (1991).

    Google Scholar 

  47. D. H. Rothman,Phys. Rev. Lett. 65:3305 (1990).

    Google Scholar 

  48. D. H. Rothman,Europhys. Lett. 14:337–342 (1991).

    Google Scholar 

  49. D. H. Rothman,J. Geophys. Res. 95:8663 (1990).

    Google Scholar 

  50. J. Rowlinson and B. Widom,Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).

    Google Scholar 

  51. C. Appert, J. F. Olson, D. H. Rothman, and S. Zaleski,J. Stat. Phys., this issue.

  52. A. W. Lees and S. F. Edwards,J. Phys. C: Solid State Phys. 5:1921–1929 (1972).

    Google Scholar 

  53. J. M. Rallison,Annu. Rev. Fluid Mech. 16:45–66 (1984).

    Google Scholar 

  54. M. Hénon,Complex Systems 1:763–789 (1987).

    Google Scholar 

  55. A. H. Krall, J. V. Sengers, and K. Hamano,Int. J. Thermophys. 10:309 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, J.F., Rothman, D.H. Three-dimensional immiscible lattice gas: Application to sheared phase separation. J Stat Phys 81, 199–222 (1995). https://doi.org/10.1007/BF02179976

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179976

Key Words

Navigation